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Abstract Many seismic tomography studies have indicated that the African Large Low Velocity Province
(LLVP) extends from the lower mantle beneath southern Africa into the upper mantle beneath eastern Africa;
however, it has been questioned whether the LLVP structure may also extend to the north or northwest beneath
south‐central Africa. Debates regarding the upper mantle structure beneath the Damara Belt contribute to this
uncertainty. Some studies suggest the Damara Belt is underlain by thermally perturbed upper mantle; however,
other studies indicate the region is not associated with anomalous structure. Here, we use a comprehensive P‐
wave travel‐time data set and an adaptive model parameterization to develop a new tomographic model for the
Damara Belt and surrounding regions. Our results show that seismically slow structure beneath the Damara Belt
is relegated to depths greater than∼1,200 km, indicating that the LLVP is not significantly affecting this region.
However, further to the northeast, the LLVP structure obliquely rises and crosses the mantle transition zone near
the Irumide Belt, where it then extends into the upper mantle. The seismic structure beneath the Damara Belt and
neighboring areas in our model correlates well with tectonic observations at the surface, including variations in
heat flow, the distribution of geothermal features, the locations of rifts, and estimates of dynamic topography.

Plain Language Summary The African Large Low Velocity Province (LLVP) is an anomalous
feature in the Earth's mantle, thought to be associated with unique temperature and compositional
characteristics. Many prior studies have shown that the LLVP originates near the core‐mantle boundary beneath
southern Africa but then ascends to the northeast, reaching the upper part of the mantle beneath eastern Africa.
However, it is unclear whether the LLVP also extends to the north or northwest beneath the Damara Belt in
south‐central Africa. Using the travel‐times of earthquake signals recorded by stations across the continent, we
have created a new model of the seismic velocity structure beneath south‐central Africa, which can be
interpreted in terms of thermal and compositional variations. Slow velocities associated with the LLVP are
constrained to depths greater than ∼1,200 km beneath the Damara Belt, which indicates that the LLVP has little
affect on this region. However, the slow LLVP structure rises to the northeast, moving into the upper mantle
beneath the Irumide Belt and the East African Rift System. The trend of the LLVP structure in our model well
matches various features observed at the surface.

1. Introduction
The Large Low Velocity Province (LLVP) beneath southern Africa is a first‐order, lower mantle feature that was
initially imaged by seismic tomography studies more than 30 years ago (e.g., Dziewonski & Anderson, 1984;
Kárason & van der Hilst, 2000; Ni et al., 2002; Ni & Helmberger, 2003; Ritsema et al., 1999; Sleep et al., 2002).
As new seismic data sets, particularly from southern and eastern Africa (Benoit, Nyblade, Owens, & Stuart, 2006,
Benoit, Nyblade, & VanDecar, 2006; Fishwick, 2010; Fonseca et al., 2014; Montelli et al., 2004, 2006; Nyblade
et al., 2008; Ritsema et al., 1998; Yuan & Li, 2022), have become available, our understanding of the LLVP's
origin, composition, and how high it rises above the core‐mantle boundary (CMB) have improved. Many
tomographic models show that the LLVP extends from the lower mantle beneath southern Africa to the northeast,
crossing into the upper mantle beneath eastern Africa (e.g., Celli et al., 2020; Chorowicz, 2005; Corti, 2009;
Hansen et al., 2012; Hansen & Nyblade, 2013), and it has been suggested that continental rifting in the East
African Rift System (EARS) is driven by the ascending LLVP structure (Boyce et al., 2021; Chang et al., 2020;
Hansen et al., 2012; Hansen & Nyblade, 2013; Rajaonarison et al., 2023). However, existing tomographic images
have limited resolution of the mantle structure beneath south‐central Africa, which has led to questions about
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whether the LLVP structure also extends to the north or northwest. In particular, there have been disagreements
regarding the upper mantle structure beneath the Neoproterozoic Damara Belt, a tectonic region that is situated
between the Congo and Kalahari cratons (Figure 1). Some prior studies advocate for a seismically slow upper
mantle beneath this area (e.g., Akinremi et al., 2022; Begg et al., 2009; Ortiz et al., 2019; Yu, Gao, et al., 2015,
2017), which could possibly indicate an extension of the African LLVP into the upper mantle beneath south‐
central Africa. Conversely, others have argued that there is no evidence for anomalously slow mantle beneath
the Damara Belt (e.g., Afonso et al., 2022; Celli et al., 2020; Pandey et al., 2022; Priestley et al., 2008; White‐
Gaynor et al., 2020, 2021); rather, the lithosphere in this region may just be thin compared to the thick litho-
sphere beneath the surrounding cratons (Afonso et al., 2022; White‐Gaynor et al., 2020, 2021).

To further investigate the tectonic structure beneath the Damara Belt and neighboring regions, we have combined
an adaptively parameterized teleseismic P‐wave tomography approach with new seismic data to generate a high‐
resolution 3‐D image of the mantle beneath south‐central Africa. This technique benefits from comprehensive
seismic ray path coverage of the entire mantle beneath the African continent as it combines data from both a
global catalog as well as from regional networks (Boyce et al., 2021; Hansen et al., 2012; Hansen &
Nyblade, 2013; Kárason & van der Hilst, 2000; Saeidi et al., 2023; Weston et al., 2018). We aim to determine
whether the upper mantle beneath the study area shows evidence for thermal perturbation and if so, to determine
whether this anomalous structure is associated with the African LLVP. Further, we seek to determine whether the
mantle structure beneath south‐central Africa may directly influence surface features, such as geothermal activity
and continental rifting.

2. Geologic Background and Previous Studies
The tectonic terranes in south‐central Africa primarily consist of Archean cratons surrounded by Proterozoic
mobile belts (Figure 1). The Kaapvaal and Zimbabwe Cratons, which formed between about 3.2 and 2.5 Ga, are
joined by the Neoarchean Limpopo mobile belt, and collectively these terranes are known as the Kalahari Craton.

The Congo Craton formed at about the same time and is composed of various
Archean and Proterozoic blocks. Between about 2.5 and 1.6 Ga, the Rehoboth
Province and the Kheis Belt were accreted to the western edge of the
Kaapvaal Craton, and later (about 1.2–1.0 Ga) the Namaqua‐Natal mobile
belt developed along the southern boundary of the craton. The Irumide Belt,
north of the Zimbabwe Craton (Figure 1), also formed at about the same time
as the Namaqua‐Natal Belt (Begg et al., 2009; Chorowicz, 2005; De Waele
et al., 2006; de Wit et al., 1992; Johnson et al., 2005; Miller et al., 2009).

The Damara and Ghanzi‐Chobe Belts (collectively referred to in this paper
as the Damara Belt) separate the Congo Craton to the north from the
Kalahari Craton to the south (Figure 1). Along the western coast of Africa,
the Damara Belt converges with the Kaoko and Gariep Belts in western
Namibia (Figure 1; Begg et al., 2009; Miller, 2008; Passchier et al., 2016).
Since the area does not readily display many of the characteristics typical of
a continental suture (e.g., Lehmann et al., 2016), early studies (Martin &
Porada, 1977; Porada, 1979) attributed the Neoproterozoic Damara, Kaoko,
and Gariep belts to a rift‐rift‐rift triple junction, situated atop a vertical
mantle plume, that formed at about 1,000 Ma. These studies also suggested
the Damara Belt later experienced a collisional deformation event, and they
characterized the region as a compound orogen/aulacogen. However, later
studies (e.g., Barnes & Sawyer, 1980; Kukla & Stanistreet, 1991) chal-
lenged the aulacogen hypothesis and instead explained the Damara Belt as
resulting from subduction followed by collision. Paleomagnetic (Z. X. Li,
Bogdanova, et al., 2008), isotopic (Foster et al., 2015), and sedimentary data
(Becker et al., 2006; Hoffman & Halverson, 2008) also suggest that the
Damara Belt was formed by the convergence of the Congo and Kalahari
Cratons at ∼590 Ma, making it the youngest mobile belt in south‐central
Africa.
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Figure 1. Map of southern Africa showing the locations of seismic stations
and the boundaries of tectonic provinces. Black triangles denote stations that
are part of the global International Seismological Center catalog, and purple
triangles denoted augmented stations. Yellow circles denote the locations of
hot springs in Zambia. CC: Congo Craton, IB: Irumide Belt, SIB: Southern
Irumide Belt, KaB: Kaoko Belt, DB: Damara Belt, ORZ: Okavango Rift
Zone, ZB: Zambezi Belt, ZC: Zimbabwe Craton, LB: Limpopo Belt, MOB:
Mozambique Orogenic Belt, GB: Gariep Belt, RP: Rehoboth Province, KB:
Kheis Belt, KC: Kaapvaal Craton, NNB: Namaqua‐Natal Belt, CFB: Cape
Fold Belt. Tectonic boundaries are from Begg et al. (2009).
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Much of the Damara Belt was not impacted by later tectonic events (Miller, 2008), and it is the only Pan‐African
terrane that has not been associated with volcanic activity over the last 30Ma (Peyve, 2011; Priestley et al., 2008).
However, during the Cenozoic, the Okavango Rift Zone (ORZ) developed in northern Botswana (Figure 1). Some
researchers (e.g., Fadel et al., 2020; Leseane et al., 2015; Modisi et al., 2000; Ortiz et al., 2019; Yu, Gao,
et al., 2015, Yu et al., 2017) have proposed that the ORZ marks the southwestern termination of the EARS: a
complex network of continental rifts and volcanic centers that extends through Ethiopia and Kenya, with branches
around either side of the Tanzania Craton (e.g., Ebinger et al., 2013; Ebinger & Sleep, 1998; Foster et al., 1997;
Furman et al., 2006; Nyblade & Robinson, 1994; Pik et al., 1998). Incipient rifting in the ORZ may have initiated
between about 120 and 40 ka (Modisi et al., 2000; Moore & Larkin, 2001). However, the extent of rifting in the
ORZ and its potential connection to the EARS is still debated. Pastier et al. (2017), for instance, used geodetic data
and seismicity to argue that no rifting is occurring in the Okavango region; instead, they suggest this area is
experiencing differential movement between the Congo and Kalahari Cratons. Based on their magnetotelluric
investigation, Khoza et al. (2013) suggested that the ORZ does not display the geologic characteristics, such as
thinned lithosphere or conductive mantle, typically associated with continental rifting. Given this, they suggested
that rifting in the ORZ is driven by surface processes and is not linked to the EARS.

Given its differences from other African mobile belts, the lithospheric and sublithospheric mantle structure
beneath the Damara Belt and the ORZ have been investigated by a number of previous geophysical studies. Some
prior investigations have suggested that the upper mantle beneath the Damara Belt and the ORZ is anomalous
compared to surrounding regions. For example, Begg et al. (2009) combined global seismic tomography ob-
servations with mantle petrology data and suggested that the lithosphere beneath the Damara Belt displays lower‐
than‐average shear‐wave velocities (Vs) that are significantly different from the higher Vs observed beneath the
Congo and Kalahari cratons. They attributed the Vs variations to changes in temperature and suggested that the
northeastern segment of the Damara Belt has higher temperatures at 150 km depth compared to the southwestern
segment. Based on local travel‐time tomography, Yu et al. (2015b, 2017) also advocated for a slow anomaly
beneath the ORZ region of the Damara Belt and suggested the anomaly is associated with decompression melting
in the incipient rifting environment. Ortiz et al. (2019) examined P‐ and S‐wave data recorded by stations in
Botswana and South Africa and found similar results, also advocating for thermal perturbations in the Damara
Belt lithosphere associated with rifting. While they did not evaluate the Damara Belt specifically, Emry
et al. (2019) saw similar structure to that indicated by Yu et al. (2017) and Ortiz et al. (2019). Anomalous structure
beneath the Damara region has also been suggested by studies employing magnetotelluric data. For example,
Akinremi et al. (2022) imaged highly conductive materials beneath the ORZ and attributed them to ascending
fluids or melt associated with continental rifting. If anomalously slow upper mantle structure is present beneath
the Damara Belt and the ORZ, it could indicate that this region is influenced by the African LLVP, similar to what
is thought to be occurring within the EARS.

Other geophysical studies have not found anomalous mantle structure beneath the Damara region. Priestley
et al. (2008), for instance, modeled multimode surface wave data to examine the VS beneath Africa, and they
suggested that the Damara Belt is underlain by relatively thick lithosphere and a high velocity upper mantle.
Using a combined regional and global surface‐ and S‐wave data set, Celli et al. (2020) also developed a VS model
for Africa and similarly observed fast, thick lithosphere under the Damara Belt. White‐Gaynor et al. (2020, 2021)
developed both body and surface wave tomography models for southern Africa and suggested the lithosphere
beneath the Damara Belt is ∼130 km thick, much thinner than that beneath the adjacent Kalahari Craton
(∼200 km). Velocity variations in their models at sublithospheric depths were attributed to lithospheric thickness
differences as opposed to thermal perturbations in the upper mantle. Afonso et al. (2022) combined both land‐
based seismic and satellite gravity data to evaluate the thermochemical structure of central‐southern Africa,
and they also advocate for lithospheric thinning beneath the Damara Belt, without evidence for thermally per-
turbed upper mantle. Additionally, the Rayleigh wave tomography model from Pandey et al. (2022) shows fast
seismic velocities beneath both the Congo and Kalahari Cratons as well as beneath the Damara region; however,
this study argued that the lithosphere beneath the Damara Belt may be up to 200 km thick.

P‐wave receiver functions have also been used to evaluate the mantle structure beneath south‐central Africa,
which is potentially relevant to the discrepancies in upper mantle structure beneath the Damara Belt and sur-
rounding regions, as reviewed above. Most receiver function analyses indicate normal mantle transition zone
(MTZ) thickness beneath much of the region (Blum & Shen, 2004; Boyce & Cottaar, 2021; Julià &
Nyblade, 2013; Sun et al., 2018; Yu et al., 2020), thereby indicating that there are no thermal anomalies extending
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across the MTZ. Sun et al. (2018), for example, suggested that any anoma-
lously slow structure associated with the African LLVP has limited impact on
the mid‐ and upper mantle beneath this region.

The lack of consensus regarding the mantle structure beneath south‐central
Africa stems from limited seismic network coverage in this region and
from resolution gaps between local, regional, and global‐scale investigations.
Our model incorporates all available seismic data collected across Africa, and
our adaptively parameterized tomography approach helps to bridge some of
these resolution gaps (Hansen et al., 2012; Hansen & Nyblade, 2013; Saeidi
et al., 2023). Collectively this allows us to better image the mantle structure
beneath the Damara Belt and surrounding areas and to evaluate how that
structure may influence tectonic features observed at the surface.

3. Data and Methodology
We have compiled a comprehensive data set of P‐wave travel‐time residuals
to develop a new high‐resolution model of the African mantle structure. Much
of our data have been acquired from a recent version of the International
Seismological Center (ISC) catalog, which includes travel‐time residuals
from about 562,000 earthquakes that occurred between 1964 and 2016
(Engdahl et al., 1998; Weston et al., 2018). A range of P‐wave phases (P, Pg,
Pn, pP, and PKP) are employed to provide broad sampling of the Earth's
interior structure, and the global ISC catalog contains about 30 million travel‐
time residuals. However, to further increase the resolution of our model
beneath Africa, data from 60 additional seismic networks (1,576 stations) that
are not included in the ISC catalog were used to augment the global data set.
The augmented data set is similar to that used by Saeidi et al. (2023); how-
ever, we now also include data from earthquakes with moment magnitudes
(Mw) > 5.5 recorded by the SAFARI (XK) network, which operated from
2012 to 2014 (Gao et al., 2012). Since this network was deployed in close
vicinity to the Damara Belt, it provides critical data for our study. The
magnitude and epicentral distance criteria (30°–90°) imposed on the selected
teleseismic events help to ensure high signal‐to‐noise ratio P‐wave arrivals.
Vertical component seismograms were examined using an iterative, weighted
stacking and cross‐correlation scheme (Hansen et al., 2020; Pavlis & Ver-
non, 2010; Saeidi et al., 2023) to robustly pick P‐wave onsets, and similar to
the ISC catalog, travel‐time residuals were computed relative to the AK135
global velocity model (Kennett et al., 1995). The augmented data set
employed in this study includes a total of 109,641 P‐wave travel‐time re-
siduals from stations across Africa (Figure 1).

Both the global ISC and the augmented African data sets were used to develop
an adaptive model parameterization for our tomographic inversion. That is,
the model gridding is adapted to variations in the ray path coverage, which
prevents regions with poor coverage from becoming over‐parameterized and

those with dense coverage from losing resolution due to averaging (Hansen et al., 2012; Kárason & van der
Hilst, 2000; C. Li, Bogdanova, et al., 2008; Saeidi et al., 2023). The smallest grid cells in our model are
0.7° × 0.7°; however, if a cell does not contain at least 900 ray paths, it is merged with neighboring cells until the
ray count threshold is met. Our current model contains 764,406 adaptive grid cells, examples of which are shown
in Figure 2.

Together, the adaptive grid and the combined ISC‐African travel‐time residuals are inverted using an iterative
damped least square approach (Paige & Saunders, 1982). The higher quality African data are given twice the
weight in the inversion in order to balance this data set against the larger but somewhat noisier ISC catalog.
Additionally, since the small incidence angle of P‐waves can cause crustal anomalies to “smear” into deeper

Figure 2. Adaptive grid cells from our tomographic model across southern
Africa, shown at selected depths. Shading indicates the number of base cells
(0.7° × 0.7°) included in each final cell. Darker shading indicates smaller
cells, and lighter shading indicates larger cells. As explained in Section 3, the
threshold for each cell is 900 ray paths; therefore, darker (smaller) cells
highlight areas with greater ray path coverage and higher resolution.
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portions of the model space, we incorporate the 3‐D CRUST1.0 model (Laske
et al., 2012) into our inversion to balance the crustal and upper mantle con-
tributions to the misfit (C. Li et al., 2006, 2008). Kárason (2002) and C. Li,
Bogdanova, et al. (2008) provide a detailed description of the sensitivity
matrix calculations, where the employed approach allows low‐frequency data
to constrain long‐wavelength structures without preventing short‐period data
from resolving small‐scale features.

The global inversion accounts for structural heterogeneities outside the study
region, but as noted above, we are interested in the mantle structure beneath
the Damara Belt. Figure 3 shows our P‐wave velocity perturbations, relative
to the AK135 reference model (Kennett et al., 1995), at select upper mantle
depths, with corresponding cross‐sections shown in Figure 4. These results
were obtained after 200 iterations of the inversion and correspond to a 93%
reduction in the error function. The length of the residual vector decreased
from 0.95 to 0.25 s, indicating the improved data fit between the starting and
the final models. For comparison, the tomographic results obtained using only
the ISC travel‐time data set (i.e., excluding the augmented data) are shown in
Supporting Information S1, Figure S1. As illustrated, the augmented data set
significantly improves model recovery across the continent.

4. Results and Resolution Tests
Comparing our tomographic results to other global (Hosseini, 2016; C. Li,
Bogdanova, et al., 2008; Lu et al., 2019; Montelli et al., 2004; Simmons
et al., 2012) as well as continental‐ and regional‐scale (Adams &
Nyblade, 2011; Begg et al., 2009; Boyce et al., 2021; Fishwick, 2010; Hansen
et al., 2012; Priestley et al., 2008) models, we observe several major anom-
alies that are broadly consistent across all studies. First, slow seismic ve-
locities are seen beneath much of eastern Africa, and this reflects the
anomalous structure of the EARS. Second, a large seismically slow anomaly
is present in the lower mantle beneath southern Africa, starting above the
CMB and extending upwards to the northeast. As noted in Section 1, this
feature is interpreted to reflect the African LLVP. Third, fast seismic ve-
locities in our model are seen in both central‐western and southern Africa, and
these are associated with the Congo and Kalahari Cratons, respectively
(Figures 3 and 4).

In the Damara Belt region, we observe slow mantle velocities, but they are
constrained to depths greater than ∼1,200 km. As illustrated in Profiles I–IV
(Figure 4), this is the case beneath both the ORZ and the rest of the Damara
Belt. The P‐wave velocity perturbation associated with this slow structure
averages about − 1%, though it reaches about − 1.5% at its peak. That said,
Profiles I, II, and V (Figure 4) show that the slow velocities ascend to shal-
lower depths on the northeast side of the study region, crossing the MTZ near

the Irumide Belt, and reaching the upper mantle beneath the EARS. Our results also suggest a change in the fast
upper mantle seismic velocities from southwest to northeast. Beneath the Damara Belt, fast anomalies extend to
∼400–500 km depth (depending on the profile), but beneath the Irumide Belt, the fast velocities are constrained to
the upper ∼200–300 km of the mantle.

Several types of resolution tests have been performed to evaluate our model. First, checkerboard resolution tests,
which are widely employed for tomographic assessment, were generated. The input checkers were 5° × 5°, with
thicknesses of 35 km and with ±2% P‐wave velocity perturbations. These synthetic anomalies were centered at
different depths within the model space to assess both lateral and vertical resolution. It is important to note that the
checkers were projected onto our adaptive grid (Figure 2), which can sometimes lead to small distortions in their
shape and/or thickness. Synthetic travel‐times were generated and inverted using the same parameters as those

Figure 3. Map‐view images of our tomographic model across southern
Africa, showing P‐wave velocity perturbations from the AK135 reference
model (δVP; Kennett et al., 1995) at selected depths. White lines show the
same tectonic boundaries as in Figure 1. Black lines labeled I to V on the
200 km panel show the locations of the cross‐sectional profiles in Figure 4.
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used for the real data, but noise was added to the synthetic travel‐times as a Gaussian residual time error with a
standard deviation of 0.25 s, which corresponds to the weighted average of the residual remaining in our model
after inversion. This approach reproduces the fit to the synthetic data as that obtained in our actual model (Hansen
et al., 2014; Rawlinson et al., 2014). Figure 5 shows examples of the recovered checkerboard tests at different
depths, with additional examples shown in Supporting Information S1, Figures S2 and S3. Amplitude recovery
varies with depth, and the best recovery (more than 60%) is obtained between about 600 and 1,000 km. At
lithospheric depths (∼100–200 km), particularly in the northwestern part of the study region under the Congo
Craton, amplitude recovery reduces to ∼30%. This is largely due to the lack of seismic station coverage in that
area (Figure 1). Similarly, given the smaller number of seismic phases that traverse the deep mantle, amplitude
recovery below about 1,500 km depth is reduced. The checkerboard pattern is generally well recovered, illus-
trating the high resolution and reliability of our model, especially when compared to the size of the investigated
features (Figures 3 and 4). These tests also provide information on the amount of vertical smearing in our model,
caused by the steep incidence angle of P‐wave arrivals (Section 3). In the upper mantle (above ∼400 km depth),
∼200–250 km of vertical smearing is observed (Figure S3 in Supporting Information S1); however, at deeper
depths, the degree of vertical smearing is reduced to ∼100 km.

We also designed a series of targeted resolution tests to evaluate features of interest in our tomographic results
(Figures 3 and 4). Various synthetic anomalies were incorporated into a single input model and were varied to
match the observed velocity features as close as possible. Our first test (Figure 6) included two fast anomalies
(2.5% and 1.5%, respectively) with thicknesses of 250 and 100 km to match the fast seismic structure beneath the

Figure 4. Cross‐sectional profiles across the study region (locations are shown in Figure 3). Select depths and features
discussed in the text are labeled. Abbreviations for tectonic features are the same as in Figure 1. We note that Profiles I and II
are the same as those from White‐Gaynor et al. (2020), though our model is plotted to deeper depth.
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Damara Belt and the Irumide Belt (anomalies C1 and C2, Figure 4),
respectively. The resolution test also included a slow anomaly (− 0.7%) below
∼1,600 km depth, corresponding to the African LLVP above the CMB
(anomaly M1, Figure 4). A second, more pronounced slow anomaly (− 1.4%)
below ∼1,200 km was also included to match our model (anomaly M2,
Figure 4). Similar to the checkerboard tests, the targeted anomalies have been
projected onto the adaptive grid (Figure 2), and the inversion was run with
synthetic travel‐times that had the same Gaussian noise application. We then
ran two additional targeted resolution tests that included the same synthetic
anomalies described above, but we also introduced a stair‐step pattern to
mimic the rise of the slow structure to shallower depths at the northeastern
part of the study area (anomaly M3, Figure 4). These additional slow
anomalies are 1% slower than the reference model, and we examined cases
where the slow structure ascended to 660 km depth (Figure S4 in Supporting
Information S1) as well as to 300 km depth (Figure 7). While the results are
impacted by some vertical smearing, this effect is fairly minimal. Of the
different examined structures, only the third targeted resolution test, which
allows the slow anomalies to cross the MTZ and extend into the upper mantle
near the EARS (Figure 7), closely approximates the actual model (Figure 4).

5. Discussion
The different resolution tests described in Section 4 (Figures 5–7; Figures S2–
S4 in Supporting Information S1) demonstrate that the P‐wave velocity
structure highlighted in Figures 3 and 4 is robust. This is further illustrated by
the extensive ray path coverage (Figures S5–S7 in Supporting Informa-
tion S1) as well as by the dense adaptive gridding (Figure 2) in our model
space across the Damara Belt and the surrounding, examined regions. At
shallow depths, the Damara Belt is characterized by seismic velocities that are
about 2.5% faster than the reference model (Kennett et al., 1995). Considering
the level of vertical smearing indicated by our resolution tests (Figure S3 in
Supporting Information S1) as well as how the synthetic anomalies project
onto the adaptive grid, we estimate the lithosphere in this region is 150–
200 km thick, consistent with prior studies (e.g., Celli et al., 2020; Pandey
et al., 2022; Priestley et al., 2008; White‐Gaynor et al., 2020, 2021). Further,
slow anomalies beneath the Damara Belt and the ORZ in our model are
constrained to the lower mantle (below ∼1,200 km depth; Figures 3 and 4).
These findings agree with the studies discussed in Section 2 that argue for
unperturbed upper mantle beneath the Damara region (Afonso et al., 2022;
Celli et al., 2020; Pandey et al., 2022; Priestley et al., 2008; White‐Gaynor
et al., 2020, 2021).

To the northeast, the lithosphere beneath the Irumide Belt and the EARS
appears to be somewhat thinner than that beneath the Damara Belt region (Figure 4). Again, taking the level of
vertical smearing indicated by our resolution tests into account (Figures 5–7; Figures S2–S4 in Supporting In-
formation S1), we approximate the lithosphere in this area to be ∼100 km thick. This agrees fairly well with the
∼100–150 km thickness estimated by previous studies (e.g., Adams et al., 2018; O’Donnell et al., 2013; Sarafian
et al., 2018). Additionally, the slow structure seen at depth beneath the Damara Belt ascends toward the northeast
portion of the study area, crossing the MTZ beneath the Irumide Belt and entering the upper mantle beneath the
EARS (Figure 4). It is worth noting that these observations agree with some prior global tomography models (e.g.,
Burdick et al., 2017; Hosseini, 2016; Houser et al., 2008; Koelemeijer et al., 2016; Lu et al., 2019; Simmons
et al., 2010, 2012; Tesoniero et al., 2015), which illustrate similar velocity patterns but with lower resolution (see
Figures S8–S13 in Supporting Information S1). Our cross‐sectional profiles I and II (Figure 4) are the same as
those in the regional study by White‐Gaynor et al. (2020), who also found slow seismic velocities beneath the
northeastern ends of Profiles I and II, though their models are limited to the upper 900 km of the mantle.

Figure 5. Checkerboard resolution tests at selected mantle depths. All models
were generated with 5° × 5° input checkers that had ±2% P‐wave velocity
perturbations (δVP) compared to the reference model (Kennett et al., 1995).
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The anomalously slow southwest‐to‐northeast velocity structure we observe along the Damara Belt and into
eastern Africa (Figure 4) is best attributed to the African LLVP rising from the CMB. Beneath the Damara Belt
region, the LLVP is constrained to depths greater than∼1,200 km (Figure 4). This is consistent with prior receiver
function investigations that indicate normal MTZ thickness beneath the study area (Blum& Shen, 2004; Boyce &
Cottaar, 2021; Julià & Nyblade, 2013; Sun et al., 2018; Yu et al., 2020), and collectively, the results suggest that
the LLVP has little influence on the mid‐ or upper mantle structure beneath the Damara Belt. Therefore, if the
LLVP does extend to the north or northwest beneath south‐central Africa, it does so within the lower mantle. That
said, beneath the Irumide Belt and the EARS, the mantle structure is quite different. Yuan & Li (2022) suggested
that the African LLVP reaches 1,500 km above the CMB, but our results and others (Bastow et al., 2008; Grijalva
et al., 2018; Halldórsson et al., 2014; Hansen &Nyblade, 2013; Rajaonarison et al., 2023) indicate that this feature
likely rises much higher, entering the upper mantle beneath the northeastern portion of our study area. These
findings are also consistent with the receiver function results from Owens et al. (2000), Huerta et al. (2009), and
Mulibo and Nyblade (2013), which all suggest a perturbed MTZ beneath this area, consistent with a thermal
anomaly that likely crosses from the lower to the upper mantle. It is also worth noting that the fast velocities
bordering the upper edge of the LLVP anomaly between ∼700 and 1,300 km depth (Profiles I–II, Figure 4) may
result from an abrupt change in mantle characteristics, consistent with the concept that the LLVP has sharp,
defined boundaries indicative of a thermochemical origin (e.g., Ni et al., 2002; To et al., 2005).

The trend of the LLVP and the velocity structure we have imaged also correlate well with various surface ob-
servations. For example, the northeastern portion of the study area, where the LLVP crosses into the upper mantle,
displays significant geothermal activity, as evident by the many hot springs in this region (Figure 1). This may

Figure 6. Targeted resolution test. The input model along Profile II is shown in the top left panel. Fast anomalies C1 and C2
represent the cratonic lithosphere under the Damara region and beneath the Irumide Belt, respectively. Slow anomaly M1
represents the African Large Low Velocity Province in the deep mantle, extending upwards from the core‐mantle boundary
to∼1,600 km depth. Slow anomaly M2 represents the slow structure seen in our model (Figure 4) just below 1,200 km depth.
Other panels show the recovered results along all five cross‐sectional profiles (I‐V, Figure 4). Abbreviations for tectonic
features are the same as in Figure 1.
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suggest that this area is associated with elevated heat flow (e.g., Elbarbary et al., 2022; Macgregor, 2020), though
we note that direct measurements (Ballard et al., 1987; Ballard & Pollack, 1987; Nyblade et al., 1990) do not find
significant heat flow variations across this portion of south‐central Africa. However, to the southwest, where the
LLVP is constrained to the deeper mantle, no such geothermal features are observed. As mentioned in Section 2,
the Damara Belt has not experienced any volcanic activity over the last 30Ma (Peyve, 2011; Priestley et al., 2008)
and this could be due to the deep‐seated (LLVP) volcanic source (Profiles III–IV, Figure 4). Additionally, studies
of dynamic topography across Africa show consistency with our tomographic results. For example, Lithgow‐
Bertelloni and Silver (1998), Gurnis et al. (2000), and Artemieva and Vinnik (2016) evaluated the source of
elevated topography across southern Africa and concluded that a low‐density, high‐temperature mantle upwelling
at sublithospheric depths must contribute to surface uplift. Globig et al. (2016) and Gedamu et al. (2021)
examined the Afar region in eastern Africa and suggested that sublithospheric mantle flow and buoyancy provide
a dynamic contribution to the surface elevation and deformation patterns in that area. These observations are
consistent with the LLVP trend interpreted from our model. Further, the shallow portion of the LLVP may
significantly influence the complex continental rift pattern seen throughout eastern Africa (Bastow et al., 2008;
French & Romanowicz, 2015; Hansen et al., 2012); however, such rifting activity is not observed throughout most
of the Damara Belt. The nature of rifting occurring in the ORZ is still a matter of debate (e.g., Pastier et al., 2017),
but if the rifting is associated with the southwestern termination of the EARS, as suggested by some prior studies
(Akinremi et al., 2022; Begg et al., 2009; Ortiz et al., 2019; Yu, Gao, et al., 2015, 2017), then it must be influenced
by extensional processes driven by something other than the LLVP (e.g., Khoza et al., 2013).

6. Conclusion
Our new adaptively parameterized teleseismic P‐wave tomography model provides further insights on the geo-
dynamic structure beneath the Damara Belt and its surrounding regions. Our findings challenge the notion that the

Figure 7. Same as Figure 6, but now the input model (top left panel) includes an additional slow anomaly, M3, that extends
across the transition zone and into the upper mantle beneath the northeastern part of our study area.
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Damara Belt and ORZ are underlain by a thermally perturbed, seismically slow upper mantle. Rather, we
advocate that anomalously slow structure beneath this area is constrained to lower mantle depths of ∼1,200 km or
greater. This suggests that the African LLVP does not extend into the upper mantle beneath south‐central Africa.
However, the slow structure at depth beneath the Damara Belt obliquely rises toward the northeast, crossing the
MTZ near the Irumide Belt, and extending into the upper mantle beneath the EARS. This variable slow structure
is best attributed to the southwest‐to‐northeast rise of the African LLVP, and its trend correlates with surface
tectonic observations, including variations in heat flow, the distribution of geothermal features, the locations of
rifts, and estimates of dynamic topography.

Data Availability Statement
The Augmented African Data set integrates seismic data from temporary and national seismograph networks
identified by their respective codes (Albuquerque Seismological Laboratory (ASL)/USGS, 1993; Albuquerque
Seismological Laboratory/USGS, 2014; Botswana Geoscience Institute, 2001; Centre for Geodesy & Geo-
dynamics, 2009; Deschamps Anne et al., 2007; Ebinger, 2007, 2012, 2013, 2014, 2018; Gaherty et al., 2013;
Gaherty & Shillington, 2010; Gao, 2009; Gao et al., 2012; GEOFON Data Centre, 1993; Ghana Geological
Survey, 2012; Hammond et al., 2011; Heit et al., 2010; Helffrich & Fonseca, 2011; Institute Earth Sciences
“Jaume Almera” CSIC (ICTJA Spain), 2007; Keir et al., 2016; Keir & Hammond, 2009; Keranen, 2013;
Kind, 1998; Leroy, 2003; Levander et al., 2009; Levèque, 2010; MedNet Project Partner Institutions, 1990;
Nyblade, 2000, 2007, 2010, 2015a, 2015b, 2017; Owens & Nyblade, 1994; Penn State University, 2004; Roult
et al., 2010; San Fernando Royal Naval Observatory (ROA) et al., 1996; Scripps Institution of Oceanog-
raphy, 1986; Silver, 1997; Thomas, 2010; Tilmann et al., 2012; Utrecht University (UU Netherlands), 1983;
Velasco et al., 2011; Vergne et al., 2014; Wiens & Nyblade, 2005; Wookey et al., 2011; Wysession et al., 2011).
The facilities of SAGE Data Services, and specifically the SAGE Data Management Center, were used for access
to waveforms and related metadata (http://ds.iris.edu/mda/). SAGE Data Services are funded through the Seis-
mological Facilities for the Advancement of Geoscience (SAGE) Award of the National Science Foundation
under Cooperative Support Agreement EAR‐1851048. Some of the data visualizations were generated with
Generic Mapping Tools (Wessel et al., 2013).
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