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ABSTRACT
The 3000-km-long Transantarctic Mountains (TAMs), which separate cratonic East Ant-

arctica from tectonically active West Antarctica, remain one of the least understood of Earth’s 
major mountain ranges. The tectonic mechanism that generates the high elevation, as well as 
the processes that produce major differences between various sectors of the TAMs, are still 
uncertain. Here we present newly constructed seismic images of the crust and uppermost 
mantle beneath central Antarctica derived from recently acquired seismic data, indicating 
ongoing lithospheric foundering beneath the southern TAMs. These images reveal an absence 
of thick, cold cratonic lithosphere beneath the southern TAMs. Instead, an uppermost-mantle 
slow seismic anomaly extends across the mountain front and 350 km into East Antarctica, 
beneath a high plateau near the South Pole. Under the slow anomaly, a relatively high-wave-
speed root is found at ~200 km depth, connected with the East Antarctic lithosphere, sug-
gesting that sinking lithosphere has been replaced at shallow depths by warm, slow-velocity 
asthenosphere. A mantle lithosphere foundering model is proposed to interpret these images, 
which best explains the present large area of high elevation and the uplift of the TAMs, as 
well as Miocene-age volcanism in the Mount Early region.

INTRODUCTION
The southern Transantarctic Mountains 

(TAMs), extending from the Ross Ice Shelf front 
to the Thiel Mountains in Antarctica (Fig. 1), bear 
different topographic and geologic signatures 
compared with other sections of the TAMs. Topo-
graphically, as the broadest part of the TAMs, 
they extend more than 300 km into East Antarc-
tica with plateau-like high elevation. In contrast, 
the northern TAMs are generally narrower. The 
southern region includes Mount Early and Sheri-
dan Bluff (Stump et al., 1980; LeMasurier et al., 
1990; Fig. 2A), which are the only sites where 
late Cenozoic volcanism is found on the East 
Antarctic craton side of the TAMs crest. Along 
other portions of the TAMs, such volcanism is 
only found within 60–100 km of the boundary 
along the West Antarctic Rift System (WARS).

The TAMs have been regarded as a rift-
shoulder mountain range, perhaps resulting 
from a combination of (1) asymmetric extension 

of the WARS, (2) thinning of the mantle litho-
sphere beneath the WARS, (3) conduction of 
heat from the WARS to East Antarctica (Stern 
and ten Brink, 1989), and (4) crustal thickening 
due to rifting-associated underplating (Fitzger-
ald, 2002). However, the first three mechanisms 
do not extend hundreds of kilometers off of the 
rift axis and so do not account for the broadly 
distributed high plateau and volcanism extend-
ing into East Antarctica well past the mountain 
crest. For the last mechanism, a complete Airy 
compensation of the southern TAMs requires 
a crustal thickness 10–15 km greater than that 
of surrounding regions. However, seismic data 
indicate normal crustal thicknesses of 25–38 km 
beneath the southern TAMs (ten Brink et al., 
1993) and an associated Airy crustal isostatic 
deficit of up to 8 km (An et al., 2015; Chaput 
et al., 2014). Thus, the fourth mechanism, the 
crustal thickening model, cannot completely 
explain the high elevation of southern TAMs.

Several studies in the TAMs (Stern and ten 
Brink, 1989; Brenn et al., 2017) suggest that 

tensional stresses resulting from normal faulting 
could produce additional flexural displacement 
across a range-parallel master fault. This would 
require a thick elastic lithosphere beneath the 
inland plateau. However, we show in this study 
that thick lithosphere does not exist beneath 
the southern TAMs, and that normal faulting 
stresses thus cannot explain the broad high ele-
vation in this region. Another hypothesis is that 
the TAMs were a plateau before the opening of 
the WARS (Bialas et al., 2007), although this 
raises additional difficulties (i.e., the origin of 
this hypothetical plateau is unknown), and does 
not explain the persistent low seismic speed that 
extends 300 km inland of the TAM front. More-
over, these alternative models do not provide 
magmatic sources for late Cenozoic volcanism 
such as at Mount Early. This paper provides new 
tomographic evidence for lithospheric founder-
ing that can explain the high elevation of the 
southern TAMs, and that is consistent with its 
uplift history and Cenozoic volcanism.

DATA
During the past 15 yr, a succession of passive 

seismographic deployments has been carried out 
across Antarctica, with the most important for 
this study being the Polar Earth Observing Net-
work–Antarctica Network (POLENET-ANET; 
2007–present) stations (Fig. 1). Surface wave 
analysis of seismic data, using ambient noise 
and teleseismic earthquake methods, shows low 
Rayleigh wave phase speeds at periods between 
30 to ~120 s, providing direct evidence that seis-
mic wave speeds in the uppermost mantle are 
substantially lower than beneath East Antarctica. 
To quantify the spatial distribution of these slow 
upper mantle seismic speeds, we have combined 
the Rayleigh wave maps derived from ambient 
noise with those from teleseismic earthquakes 
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constructed by Heeszel et al. (2016) to construct 
a new three-dimensional (3-D) shear speed (VS) 
model for the crust and upper mantle beneath 
western and central Antarctica encompassing 
the southern TAMs. To provide better con-
straints on shallower structure, P to S receiver 
functions are also incorporated at seismic station 
locales. Compared with the methods of Heeszel 
et al. (2016), the incorporation of the ambi-
ent noise data and receiver functions helps us 
impose better constraints on crustal and Moho 
structures, decrease the tradeoff between Moho 
depth and the velocity of the adjacent crust and 

mantle, and better understand the contribution of 
mantle support to the high elevation in addition 
to simple Airy compensation. Notably, the rigor-
ous Monte Carlo error estimates for the resulting 
3-D seismic model confirm a seismically low-
velocity zone (LVZ) beneath the southern TAMs.

RESULTS
Key features of the new 3-D model are 

shown in Figures 2 and 3. An LVZ is observed 
in the upper 50–80 km beneath the southern 
TAM front, extending into East Antarctica (Fig. 
2B). The widest portion of the LVZ extends to 

the inland (eastern) flank of the southern TAMs, 
suggesting that the LVZ covers a broad region 
of >200,000 km2. The slowest VS of the LVZ 
is ~4.12 ± 0.04 km/s at ~80 km depth (see the 
GSA Data Repository1) and is underlain by a 
relatively fast (4.65 ± 0.06 km/s) deeper mantle 
compared to the WARS. Figure 2C presents the 
difference between VS at ~200 km depth and for 
averaged uppermost mantle (averaged across 
the uppermost 50 km). Beneath the LVZ, this 
difference is especially large (~0.3–0.4 km/s), 
while in contrast, it is −0.1 to 0.1 km/s across 
the rest of the study region, and the global aver-
age is ~0.02 km/s. Error analysis shows that 
this velocity increase is required by the seismic 
data, regardless of the Moho uncertainties, prior 
models, and other assumptions incorporated into 
the inversion, thus it is unlikely generated by the 
depth tradeoff of surface wave inversion. Verti-
cal cross sections (Figs. 3A and 3B) confirm 
a slow-above-fast structure beneath the high 
southern TAMs. The fast structure dips toward 
the WARS, and its inland end is continuous with 
East Antarctic lithosphere. We interpret this as 
foundering cold and fast lithosphere, and the 
wedge-shaped slow anomaly in the uppermost 
mantle is interpreted as the warm and slow 
asthenosphere that has flowed into the region 
formerly occupied by the lithosphere.

DISCUSSION
Given their remote location and thick ice 

sheet, the southern TAMs, especially their 
extensive inland plateau, have sparse geologi-
cal constraints on tectonic history. The seismic 
model, showing an absence of a crustal root 
and strong slow-velocity anomalies, along with 
the episodic uplift history, Cenozoic volcanism, 
absence of compressional faulting, and exten-
sion along the adjacent WARS, all provide strong 
support for a mantle source of the high eleva-
tion. Cross section A-A′ (Fig. 3A) shows a slow 
speed anomaly with an amplitude of ~–6% rela-
tive to both the regional average and the global 
reference VSV (vertically polarized shear-wave 
velocity), and up to ~–10% relative to the East 
Antarctic lithosphere beneath the elevated regions. 
The abnormally slow speed may have elements 
that are compositional (Lee, 2003), but it is most 
likely predominantly thermal (Cammarano et al., 
2003), indicating a much higher temperature rela-
tive to both the East Antarctic craton and the aver-
age mantle at these depths. Calculations using 
experimentally derived relations between shear 
velocity and mantle temperature (e.g., Goes et al., 
2000) suggest temperatures of ~300–500 K above 
the mantle temperatures beneath East Antarctica. 

1 GSA Data Repository item 2018016, methods 
and supplemental information, is available online at 
http://www.geosociety.org/datarepository/2018/ or 
on request from editing@geosociety.org. POLENET-
ANET seismic data can be accessed through the IRIS 
Data Management Center (http://www.iris.edu/mda).
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Figure 2. Map view images of shear wave structure. A: Elevation of study region, with tectonic 
locations marked by abbreviations: East Antarctic (EANT) craton; West Antarctic Rift System 
(WARS); Ross Ice Shelf (RIS); Byrd Subglacial Basin (BSB); Whitmore Mountains (WM); and 
Thiel Mountains (TM). Small open box marks approximate location of Mount Early and Sheri-
dan Bluff volcanism. Red contour highlights area with the slow (<4.37 km/s) uppermost mantle 
speed beneath southern Transantarctic Mountains (TAMs) shown in B. Geographic locations 
including South Pole (SP), Titan Dome (TD), and Hercules Dome (HD) are indicated. B: Average 
VS in uppermost 50 km of mantle, showing absence of cold, fast mantle lithosphere beneath 
TAMs. Black lines indicate locations of two vertical profiles shown in Figure 3. C: Difference 
between VS at 200 km and average VS in uppermost 50 km of mantle. Regions with large posi-
tive differences indicate cold lithosphere below warm asthenosphere.

Figure 1. Sub-ice topogra-
phy of Antarctica (Fretwell 
et al., 2013) and bathyme-
try of surrounding oceans 
relative to sea level, show-
ing study region (black 
box) and seismic stations 
utilized (circles). Major 
mountain ranges between 
East Antarctica (EANT) 
West Antarctica (WANT) 
include the northern and 
southern Transantarctic 
Mountains (N. TAMs and 
S. TAMs, respectively); 
El lswor th Mountains 
(EM); Whitmore Mountains 
(WM); and Thiel Mountains 
(TM). Northern Victoria 
Land (NVL), the Ross Ice 
Shelf (RIS), West Antarctic 
Rift system (WARS), Adare 
Trough (AT), and Terror 
Rift (TR) are also marked 
by abbreviations. Two red 
dashed lines mark rift-shoulder (western) and inland (eastern) flanks of high-elevation region 
that separates the continent into stable, cratonic EANT and more tectonically active WANT. 
POLENET-ANET— Polar Earth Observing Network–Antarctica Network; GNS—Global Seismo-
graphic Network; temp.—temporary.
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This elevated temperature reduces the density of 
the uppermost 60–100 km of the mantle by ~1%–
1.5%, providing an extra buoyancy force that is 
capable of supporting an additional ~1.5–2 km of 
surface elevation. Near the southern TAMs, the 
slow anomaly beneath the high plateau extends 

~350 km inland, mirroring the distribution of high 
elevations. Additionally, cross section B-B′ (Fig. 
3B) also shows that an uppermost-mantle LVZ 
extends beneath the Thiel Mountains, which are 

~300 km inland from the WARS.
The southern TAMs have uplifted episodi-

cally from the Late Cretaceous through to the 
present (Behrendt and Cooper, 1991; Barrett, 
2013). Fission-track and geological data sug-
gest, however, a particularly dominant period 
of exhumation and uplift from 50 Ma to 20 Ma 
(Fitzgerald, 2002; Fitzgerald and Stump, 1997; 
Miller et al., 2010). Uplift at this time scale 
can be explained by the adiabatic upwelling of 
asthenosphere mantle due to lithosphere foun-
dering (Göğüş and Pysklywec, 2008). Mount 
Early and Sheridan Bluff, located on the East 
Antarctic flank, erupted at ca. 15–19 Ma (Stump 
et al., 1980; K. Panter, 2017, personal com-
mun.), and glacially deposited boulders dated 
at ca. 17 Ma with a likely source region far-
ther inland (K. Licht, 2017, personal commun.) 
indicate an extensive region of Miocene volca-
nism. These volcanic deposits are ~200–300 
km inland from the TAM front and lie above 
the slowest uppermost mantle region (Fig. 2B), 
indicating that mantle temperature beneath the 
high-elevation region was high enough to serve 
as a magmatic source.

Mantle lithosphere foundering by delamina-
tion (Bird, 1979) or viscous downwelling (Con-
rad and Molnar, 1997), resulting from the gravi-
tational instability of cold and thus negatively 

buoyant lithosphere, is a promising candidate for 
interpretation of our seismic images and other 
observations in this area. Given a reasonable 
difference between ambient mantle (assumed to 
be ~3.3 g/cm3) and sub-TAM lithosphere (~1% 
higher, at ~3.33 g/cm3) and an initial thick-
ness of sub-TAM lithosphere of ~150–250 km, 
such foundering can initiate within 10–20 m.y. 
after the lithosphere perturbation and can run 
to completion in ~80 m.y., given an intermedi-
ate upper-mantle lithospheric viscosity (~1022 
Pa). Replacement of cold lithosphere by warmer 
asthenosphere, on a time scale that is depen-
dent on upper-mantle viscosity, is the key conse-
quence of this foundering. Other consequences 
include (1) zones of differential uplift due to 
the replacement of the lithosphere by asthe-
nosphere (Göğüş and Pysklywec, 2008; Stern 
et al., 2013), (2) volcanism due to decompres-
sion melting, and (3) crustal extension near the 
plateau uplift, of which all are observed near 
the southern TAMs area. Figures 3C and 3D 
highlight this proposed mechanism. Please note 
that the width and characteristics of the TAMs 
change significantly along strike, so it is cur-
rently unclear whether the foundering model can 
be successfully applied to the entire TAMs range.

Seismic and geological evidence for litho-
sphere foundering has been found in many 
other continental locales (e.g., Zandt et al.,2004; 
Levander et al., 2011; Stern et al., 2013). Its 
onset requires two conditions: (1) a cold and 
heavy subcontinental lithospheric mantle lid; 
and (2) a trigger that thermally disrupts the man-
tle lid, or a simple deformation on a non-New-
tonian rheology (Billen and Houseman, 2004). 
Ancient refractory cratonic mantle lithosphere is 
usually neutrally or positively buoyant (Jordan, 
1988) and has a dry peridotite rheology (Karato 

and Wu, 1993; Peslier et al., 2010), preventing it 
from foundering. However, early tectonic events 
(i.e., the early Paleozoic Ross orogeny [Goodge, 
2007] and Late Jurassic rifting evidenced by tho-
leiitic magmas [Schmidt and Rowley, 1986]) 
may have replaced the original lithosphere with 
fertile mantle or refertilized the older mantle 
through metasomatism in this region. Following 
a cooling process of >100 m.y., a thick, cold and 
heavy lithospheric lid would form, leaving the 
continental lithosphere vulnerable to foundering 
under suitable subsequent tectonic conditions.

In an extensional environment, lithosphere 
foundering may proceed following the forma-
tion of a step or edge in the mantle lithosphere 
(Buck, 1986; Stern et al., 2013). For the southern 
TAMs, we suggest that Cretaceous and later rift-
ing in the WARS would have created the step. 
Active volcanism in the Mount Early region at 
15–20 Ma (Stump et al., 1980) suggests that 
foundering had progressed significantly by that 
time. This age is similar to that of the rifting 
episodes at the Adare Trough at 24 and 17 Ma 
(Granot et al., 2010) and the Terror rift (Hall 
et al., 2007), suggesting that Miocene rifting 
might be the trigger. Another possibility is that 
the foundering was triggered at an earlier time 
during Paleogene rifting (ca. 60–80 Ma) at the 
TAM front, when initial destabilization of the 
lithosphere could have caused a set of significant 
exhumation episodes in this region between 80 
and 20 Ma (Fitzgerald, 2002). In the second 
case, the lithospheric foundering may have 
migrated inboard to generate the Mount Early 
volcanism and the broad plateau uplift at ca. 17 
Ma. In either case, the foundering was triggered 
by the rifting of the WARS, perhaps through 
edge-driven convection of the uppermost mantle 
(e.g., van Wijk et al., 2008).

A broader implication is that the presence 
of warm asthenosphere at shallow depth would 
greatly alter glacial isostatic adjustment (GIA) 
in this region. Previous GIA calculations using 
typical global average lithospheric thickness and 
mantle viscosity estimates predict a much higher 
uplift rate than observed by continuous GPS 
receivers in this area, and the data cannot be fit by 
any reasonable ice mass change model (White-
house et al., 2012; Wilson et al., 2016). Much 
thinner elastic lithosphere and low-viscosity 
mantle resulting from the lithospheric founder-
ing and asthenospheric upwelling would cause 
faster GIA such that the observed uplift is only 
sensitive to very recent ice mass changes. These 
anomalous mechanical properties of the upper-
most mantle in southern TAMs should be consid-
ered in future GIA interpretation and modeling.
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