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a b s t r a c t 

Fractional calculus has been used to model various hydrologic processes for 15 years. Yet, there are still 

major gaps between real-world hydrologic dynamics and fractional-order partial differential equations 

(fPDEs). In addition, the applicability of fPDEs in the broad field of Earth dynamics remains obscure. This 

study first reviews previous applications and then identifies new research directions for fPDEs simulat- 

ing non-Fickian transport in both surface and subsurface hydrology. We then explore the applicability of 

fractional calculus in various anomalous dynamics with a wide range of spatiotemporal scales observed 

in the solid Earth, including internal dynamics (such as inner core rotation, outer core flow, mantle con- 

vection, and crustal deformation), large-scale surface dynamics (in fluvial, Aeolian, and glacial systems), 

and small vertical-scale surface kinetics (in crystal growth, rock/mineral weathering, and pedogenesis), 

where driven forces, previous modeling approaches, and the details of anomalous dynamics are analyzed. 

Results show that the solid Earth can provide an ideal and diverse base for the application of fractional 

calculus and fPDEs. Complex dynamics within and across spatiotemporal scales, multi-scale intrinsic het- 

erogeneity, and intertwined controlling factors for dynamic processes in the solid Earth can motivate the 

application of fPDEs. Challenges for the future application of fPDEs in Earth systems are also discussed, 

including poor parameter predictability, the lack of mathematical specification of bounded fractional dif- 

fusion, lack of intermediate-scale geologic information in parsimonious and upscaling models, and a lack 

of models for multi-phase and coupled processes. Substantial extension of fPDE models is needed for the 

development of next-generation, solid Earth dynamic models, where potential solutions are discussed 

based on our experience gained in the development and application of fractional calculus and fPDEs over 

the last decade. Therefore, the current bottleneck in the application of fractional calculus in hydrologic 

sciences should not be the end of a promising stochastic approach, but could be the early stage of a 

decade-long effort filled with multiple new research and application directions in geology. This conclu- 

sion may shed light on the bottleneck challenging stochastic hydrogeology, where the advanced stochastic 

models (with more than 3500 journal publications in the last three decades) have not significantly im- 

pacted the practice of groundwater flow and transport modeling. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fractional calculus and corresponding fractional partial differ-

ntial equations (fPDEs) have drawn increasing attention in vari-

us scientific disciplines involving heavy-tailed dynamics for two

ecades [1–3] . When the integer-order derivative in a standard

ass, momentum or energy conservation model is replaced by a

ractional-order derivative, the local variation of mass, momentum
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r energy (which usually cannot be measured exclusively) can be

pscaled, resulting in a nonlocal fPDE with spatially or temporally

veraged parameters that can efficiently capture the heavy tailed

ynamics without the prohibitive burden of mapping detailed sys-

em heterogeneity. After 20 years of application in the natural

ciences and tremendous effort s in the development of theories,

odels, and solvers for fPDEs (e.g., google scholar showed 216,0 0 0

ublications in December 2016 containing “fractional partial differ-

ntial equations” AND “application”), we now need to review these

pplications to better understand the nature of anomalous dynam-

cs and improve previous models and to identify future research

irections for fractional calculus and fPDEs. Specifically, what are

http://dx.doi.org/10.1016/j.chaos.2017.03.051
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the future application areas of fPDEs, and what type of models and

mathematical theory are needed in the next decade? This study

attempts to address these challenges from a geological perspec-

tive, which is perhaps the most complex and broad discipline in

the natural sciences. 

Geology is focused on planet Earth. The Earth system is a dy-

namic, global interconnecting web of physical, chemical, and bio-

logical phenomena involving the solid Earth, the hydrosphere, and

atmosphere, which transform or modify unidirectionally or period-

ically at various time scales (varying from seconds to billion years)

and spatial scales (from atom level to continental scale). Fractional-

calculus-based models have been successfully applied to capture

various real-world anomalous processes in the hydrosphere (see,

for example, the review by Zhang et al. [4] ). Anomalous transport

has been observed for tracers moving alongside water in natu-

ral geological media, including soil, rivers, and aquifers (see ref-

erences and brief review in Section 2 ). Such anomalous behav-

ior may persist or evolve when the transport of dissolved pollu-

tants spans a wide range of spatiotemporal scales, where drivers

of anomalous dynamics (such as hydraulic properties) exhibit in-

trinsic multi-scale heterogeneity. 

This study focuses on both the hydrosphere and the solid Earth.

Applications of fPDEs help to understand the nature of liquid phase

contaminant transport in the hydrosphere, one of the fundamen-

tal and challenging tasks in hydrology. Further development and

applications of fPDEs to modeling other complex hydrologic pro-

cesses are needed, which will be discussed in this study. We then

explore the potential extension of fractional calculus in solid Earth

applications, another major component of the Earth system that

has received little attention so far in the application of fPDEs. The

solid Earth contains intrinsic multi-scale physical, chemical, and/or

biological heterogeneity, which may provide an ideal and diverse

base for developing and testing the application of fPDEs and non-

local transport theories. 

The rest of this work is organized as follows. In Section 2 , we

briefly review the hydrologic processes that can be characterized

by fPDEs and explore the underlying physical reason for favoring

the application of fPDEs. Future applications of fPDEs in both sur-

face and subsurface hydrology are then discussed. In Section 3 , we

explore a broad range of anomalous geological dynamics (with fast

displacement, elongated delay, or a mixture) in the solid Earth,

by focusing on their underlying driving forces and mechanisms,

which can guide the development of physical-based models using

fractional calculus. Both Earth’s internal dynamics and Earth sur-

face processes are discussed. In Section 4 , we discuss the intrinsic

challenges and potential solutions for the application of fPDEs in

quantifying various dynamics in the solid Earth and hydrosphere

identified in the previous sections. Conclusions are finally drawn

in Section 5 . We believe that this study can provide broad research

and application areas in the geological sciences for fractional cal-

culus throughout the next decade. 

2. Application of fPDEs in hydrosphere 

2.1. A brief review: spatiotemporal nonlocal signal in water flow and 

solute transport 

Fractional calculus, which is as old as its integer-order coun-

terpart, replaces integer numbers with real numbers in differen-

tial and integration operators [5,6] . The fractional-derivative oper-

ator was used to generalize Fick’s law to capture super-diffusion

by the physics community, and has remained an active research

area for simulating anomalous diffusion [1,2] . There are two types

of fractional-derivative models in hydrology. The space fractional-

derivative model captures the fast movement (or super-diffusion)

of targets (such as tracers), while the time fractional-derivative
odel captures delayed motion due likely to retention, compared

o its integer-order counterpart. The fPDEs are attractive in simu-

ating hydrologic processes since they are nonlocal, upscaling mod-

ls that can efficiently capture sub-grid heterogeneity and the spa-

ial correlation of heterogeneity [4] . 

We first explore knowledge obtained from previous applications

f modeling flow and transport in the hydrosphere with fPDEs,

n the liquid component in the Earth system. Since the pioneer-

ng work of Benson [7] , Meerschaert et al. [8] , and Benson et al.

9] , who introduced the fractional-order diffusion model for super-

iffusive solute transport in hydrology (see also Meerschaert et

l. [10] ), fractional-derivative models had been developed, approxi-

ated, and applied to quantify many procedures in water cycles.

e group these procedures into three regimes: subsurface (i.e.,

orous media and fractured rock masses), soil, and surface, and we

eview each of them in the following paragraphs. 

Subsurface flow and transport modeling has benefited from

he application of fPDEs, considering the inefficiency of stan-

ard Fickian-based transport models in capturing well-documented

on-Fickian transport in natural aquifers. Two representative

quifers have been explored extensively: alluvial aquifer/aquitard

ettings and fractured aquifers. In a typical alluvial deposit, spa-

ially interconnected ancient channels (which can extend up to

undreds of meters for straight-type channels) provide preferen-

ial flow paths and motivate super-diffusive contaminant trans-

ort [11] , which are efficiently characterized by space fractional

dvection-dispersion equations (fADE) [12] . Meanwhile, surround-

ng low-permeability floodplain deposits retard pollutant transport

nd cause significant sequestration or sub-diffusion, which can be

odeled by the time fADE [13–15] . In erratic, multi-dimensional

ractured media constituting 90% of natural aquifers, fast motion in

ractures and multi-rate mass exchange due to matrix diffusion can

esult in a mix of super- and sub-diffusion, which can be modeled

y spatiotemporal fPDEs [16,17] . The fPDEs are especially attractive

hen describing complex transport behavior in fractured media at

egional scales, without introducing the computational burden of

xplicitly incorporating individual rock fractures [18] . 

Natural soil exhibits complex internal structures and hetero-

eneous hydraulic properties, such as unsaturated hydraulic con-

uctivity, which can vary by orders of magnitude in a short dis-

ance. Macropores consisting of earthworm burrows, root chan-

els, interconnected cracks, interaggregate pores, and/or other lo-

al high-permeability zones in aggregated field soils (which are

ypically shorter than ∼10 m in natural soil along a hillslope)

an provide non-equilibrium preferential pathways for water and

hemicals. Meanwhile, micropores, clay minerals, and/or other soil

atrix regions tend to adsorb solute particles and challenge lo-

al equilibrium assumptions that support standard flow models.

he existence of macropores and/or micropores can result in non-

oltzmann scaling of water flow through horizontal soil columns,

hich cannot be efficiently captured by the Richards equation (as-

uming normal diffusion). A fractal Richards equation, which is

imilar to the fPDE, was proposed by Sun et al. [19] to quantify

oth super- and sub-diffusive, non-Boltzmann scaling in unsatu-

ated soil. The fractal nature of soil also motivated Pachepsky et al.

20] to propose a time-fractional Richards equation without dis-

inguishing the mobile and immobile status. The fractional Green-

mpt model was also proposed by Voller [21] to account for the

on-monotonic rate of infiltration through natural soils. 

Surface hydrologic processes, including surface runoff and sed-

ment transport in rivers, exhibit complex patterns due to spa-

iotemporal memories and have been recently modeled by fPDEs.

or example, Harman et al. [22] developed a subordinated kine-

atic wave equation (KWE) to model heavy-tailed flow responses

with a power-law memory function) from heterogeneous hill-

lopes. Zhang et al. [23] proposed a spatiotemporal fractional-order
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Table 1 

Hydrosphere: hydrologic processes in subsurface aquifers, soil, and land surface. 

Group Representive process Major triggers/dominant factors fPDEs developed before Future extension 

Subsurface (1) Conservative contaminant 

transport 

(2) Bimolecular reaction 

(1) Mobile zone due to 

interconnected high-permeable 

deposits 

(2) Immobile zone due to 

clay/matrix 

(3) Incomplete mixing of 

reactants 

Standard fPDEs (1) Transient flow (fractional-order 

flow equation) 

(2) FPDE for complex chemical 

reactions (fractional-order reactive 

model) 

(3) Variable density flow 

Soil Moisture movement with 

non-Boltzmann scaling 

(1) Macropores for fast 

movement of water and 

chemicals 

(2) Micropores or soil matrix 

for retention 

(1) Fractal or fractional 

Richards equation 

(2) Fractional Green-Ampt 

model 

(1) Soil aeration (Fractional-order gas 

diffusion model) 

(2) Heat conduction (Fractional-order 

Fourier law) 

(3) Multi-phase transport 

(Fractional-order Raoult’s law) 

Surface (1) Surface runoff

(2) Bedload sediment transport 

in rivers 

(1) Random distribution of soil 

hydraulic properties, 

topography, land cover, etc. 

(2) Turbulence and river bed 

properties 

(1) Fractional-order continuity 

model 

(2) Fractional-model for 

sediment transport 

Biological and ecological process in 

rivers 
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ontinuity equation to quantify scale-dependent overland flow, by

dding power-law memory kernels to the standard KWE. Many

ffort s have been made to develop and apply the fPDEs to effi-

iently quantify the random motion and burial periods of bedload

ediments along natural river beds, by extending previous mod-

ls for bedload transport (for an incomplete list, see Bradley et

l. [24] and Zhang et al. [25] for field applications). Other non-

ocal models, such as the Exner-based Master Equation [26] and

he elastic Langevin equation [27] , were also proposed for bedload

ransport. The above processes are summarized in Table 1 . 

The above applications show that the fPDEs applicable for hy-

rosphere dynamics exhibit similar forms. For example, the one-

imensional, spatiotemporal fPDE model that can distinguish the

obile and immobile status of (water, chemical, or sediment) par-

icles takes the form [28] : 

∂ P m 

∂t 
+ β

∂ γ , λT P m 

∂ t γ , λT 
= −v 

∂ P m 

∂x 
+ D 

∂ α P m 

∂ x α
, (1a)

∂ P im 

∂t 
= 

∂ γ , λT P m 

∂ t γ , λT 
, (1b) 

here P [ ML −3 ] is the density (or chemical concentration for pollu-

ant transport process); the suffix “m” (or “im”) denotes pollutant

n the mobile (or immobile) phase; β [ T γ −1 ] is the total capac-

ty coefficient; 0 <γ < 1 [dimensionless] is the order of the time

ractional derivative; λT [ T −1 ] denotes the truncation parameter in

ime; v [ LT −1 ] is the average velocity; D [ L 2 T −1 ] is the effective

iffusion coefficient; and 1 <α < 2 [dimensionless] is the order of

he space fractional derivative. When γ = 1 and α = 2, model (1)

educes to the standard advection-dispersion equation (ADE) with

inear equilibrium sorption during transport (and a unit distribu-

ion coefficient). Model (1) (most times with λT = 0; i.e., without

empering in the stable density) was used to simulate pollutant

ransport in aquifers [9,4,14,29] , pollutant transport in fractured

edia [16,18] , rainfall properties [30] , and water wave propaga-

ion and flow in pipes [31,32] . Model (1) and its extension were

lso used to simulate sediment transport in rivers [24,25,33] and

urface runoff along heterogeneous hillslopes [23] . In the follow-

ng we will discuss the potential extension of model (1) for simu-

ating other dynamics in the Earth system. We note that a mech-

nistic physical model is preferred to describe Earth system dy-

amics, and fractional calculus can be added into the model by ei-

her developing a nonlocal physical model, or adding memory im-

act to the original, local model. In the first approach, the spatial

nd/or temporal convolution of the research target with nonlocal

ernels may lead to specific fractional-derivative models (see fur-

her discussion in the next section). In the second approach, the
ubordination approach (an efficient mathematical tool for trans-

erring the system from physical time to a new operational time

34,35] ) can be used to add temporal and/or spatial memory to

he traditional PDE governing the Earth system dynamics of inter-

st. It is also noteworthy that model (1) with only time nonlocality

i.e., α = 2) is a subset of the general time-nonlocal conservation

odel. Particularly, model (1) with α = 2 reduces to the multi-rate

ass transfer (MRMT) model with upper-truncated mass trans-

er rates [36] , the hydrologic-version of the continuous time ran-

om walk (CTRW) with an exponentially-truncated memory func-

ion [37] , and a specific case of the phase exchange model [38] .

odel (1) with only space nonlocality (i.e., γ = 1) is a subset of the

onvolution-Fickian transport model [39] . Hence, the potential ex-

ension of the fPDE discussed in this study may also shed light on

ther nonlocal models. We note that the full version of model (1)

eparates sub- and super-diffusion driven by different mechanisms,

nd as will be shown below, it can be extended to nonstationary

ystems. 

In summary, hydrologic processes occurring in the subsurface,

oil, and surface can exhibit non-Fickian behaviors, mainly due to

ulti-scale heterogeneity embedded in hydrologic and hydroge-

logical properties. Note that the hydrologic processes discussed

ere include not only solute transport (where the non-Fickian be-

avior is likely due to nonlocal, mechanical dispersion and/or so-

ute retention), but also water movement (where the non-Darcy

ehavior is likely due to differential advection and/or water re-

ention). For example, Silva et al. [40] showed that dual-domain

ow processes can give rise to nonlocal models (see their Eqs. (5 )

nd ( 6 ), which are similar for both water flow and solute transport

ith multiple mass-transfer rates) and capture non-equilibrium

ow/transport behavior. Although the exact driving forces and

ransport mechanisms for these non-Fickian dynamics differ appar-

ntly from subsurface aquifers to surface rivers (see Table 1 ), these

ydrologic processes can be conceptualized as stochastic processes

ith random displacement between random waiting periods, lead-

ng to the same mathematic description underlying the fractional-

erivative based stochastic model. It is also noteworthy that the

PDE models can differ subtly from subsurface to surface processes,

ikely due to the discrepancies of scale and flow velocity in differ-

nt regions. For example, water in aquifers can move as slowly as

0 −3 ∼10 0 m/day, and the preferential pathway may be longer than

he plume size (hundreds of meters) in most monitoring periods

typically shorter than a few years) due to lateral continuity, re-

uiring the fPDE model with a standard stable density. Preferential

athway in soils or rivers (typically in the range of 10 −1 ∼10 1 m),

owever, can be much shorter, and hence tempered stable density
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should be applied in the fPDE to describe solute movement with

finite jumps, as discussed in Meerschaert et al. [41] . 

2.2. Potential future research and application directions of fPDEs in 

hydrosphere 

The application of fractional models in the hydrosphere is

reaching a bottleneck, similar to the other stochastic hydrogeol-

ogy approaches that have been developed and applied for 40 years

(including perturbation methods, moment equation approaches,

Monte Carlo methods, and PDF-based methods [42] ), likely due to

a lack of incorporation of local hydrogeologic properties, limited

information on the geologic architecture, and/or lack of data assim-

ilation, including measurements of dependent variables [43] (see

further discussion in Section 4 ). In other words, an information-

rich and hydrogeology/practice-oriented fPDE model might be the

future research direction for fractional calculus in the hydrosphere.

How to incorporate geologic information into the fPDE models will

be discussed further in Section 4.2 . Here we explore the major re-

search areas in the hydrosphere that have not yet been a focus of

the fractional approach. 

Further research and application of fPDEs are needed to de-

scribe real-world reactive transport, multi-phase transport, variable

density flow, energy transfer, and coupled flow and transport in

the hydrosphere. For example, previous applications of fPDEs in

hydrologic dynamics are limited to conservative tracers and liquid-

solid phases. Fractional calculus-based diffusion theories have not

been applied for real-world reactive dynamics beyond fundamen-

tal, second-order bimolecular reactions [44-46] . The challenge is

that chemical reactions occur at the molecular level, which cannot

be reliably upscaled in a stochastic model focusing on larger-scale

plume spreading. One possible solution might be the Lagrangian

approach for mixing-controlled reaction kinetics [47] combined

with updated transport models [48] , which lead to a multi-scale

fPDE model. Another way to build a multi-scaling model is to com-

bine the fractional model (for large-scale transport) and mixing-

limited (mixing-ratio based) reactions for multispecies [49,50] or

the lamellar description for mixing [51] . In addition, multiple-

phase transport for volatile chemicals (i.e., pesticides) in natural

soil remains a historical challenge in numerical modeling, which

may require a fractional-version of Raoult’s law or other improved

formulas for gas-water phase partitioning (that can characterize

the possible multiple rate partition). Soil aeration may also re-

quire a fractional-version of a gas diffusion model, considering

(1) the significant discrepancy of gas diffusion capability between

void space and water films in the vadose zone, and (2) the ob-

scure internal structure and connectivity of natural soil that can-

not be reliably measured. In addition, fPDEs may also be needed to

capture heat conduction in unsaturated soils, where the standard

Fourier’s law can be generalized by a fractional-order conductive

heat flux to account for non-uniform conduction. Similar general-

izations have already been proposed by several researchers for the

Stefan model of latent-heat transfer [52-54] . The challenge of soil

systems is that unsaturated soil can be much more complex, since

it contains multiple phases and scales of heterogeneity. When wa-

ter turns partially into ice in winter, the heat flux is altered signif-

icantly, challenging previous heat conductive models. In addition,

how to develop fPDEs to capture variable density flow, and how to

couple transient flow and transport processes (which may require

the coupled fractional flow equation and fADE for non-steady and

nonuniform flow), remain unknown. These processes can lead to

future research topics of fractional calculus. 

In addition, complex dynamics can also be observed in other

aquatic processes. For example, in biogeochemical sciences, the re-

liable quantification of transport and transformation of dissolved

organic matter (DOM) in rivers/streams remains a historical chal-
enge, even at the reach scale, due to complex biological (i.e., mi-

robial consumption) and chemical (such as photosynthesis) reac-

ions whose rates, sources, and types cannot be measured exten-

ively or even fully understood at present. Similar challenges ex-

st for quantifying aquatic dynamics in molecular and isotopic geo-

hemistry, and regional, environmental and exploration geochem-

stry. High uncertainty and limited information in aquatic geo-

hemical processes requires efficient stochastic models, motivating

he future application of fPDEs. The knowledge gained in subsur-

ace contaminant transport modeling over the past decade may

uide the development of fPDEs for the above chemical kinet-

cs. The necessity of fractional calculus in geology may be much

tronger than expected, with the last decade being only the begin-

ing of the application of fPDEs, even for the well-studied hydro-

phere. 

A generalized nonlocal model might be needed to account for

arious memories in anomalous dynamics. This might be done by

eneralizing the standard fPDE (1) after combining the multi-rate

ass transfer model with a general memory function [55,36] and

ith the nonlocal dispersive constitutive theory with a general ker-

el in space [56,39,12] : 

∂P m 

( x, t ) 

∂t 
+ β

∂P m 

( x, t ) 

∂t 
∗ f ( t ) = − ∂ 

∂x 
[ v ( x, t ) P m 

( x, t ) ] 

+ 

∂ 

∂x 

∫ t 

0 

∫ 
R 

g ( y, t, τ ) 
∂P m 

( x − y, t − τ ) 

∂ ( x − y ) 
dyd τ, (2a)

 im 

( x, t ) = 

∫ t 

0 

f ( t − s ) P m 

( x, s ) ds, (2b)

here the symbol ∗ denotes convolution, f ( t ) [ T −γ ] is the memory

unction defining the distribution of rate coefficient for mass ex-

hange between the mobile and immobile zones, g is the mem-

ry kernel for diffusive jumps in space, and R [ L ] denotes one-

imensional Euclidean space. When the velocity remains constant

nd the two memory functions take the following specific forms:

f ( t ) = 

∫ t 

0 

e −λT r 
γ r −γ −1 

�( 1 − γ ) 
dr, (3a)

 ( y, τ ) = 

D δ( τ ) H ( y ) 

�( 2 − α) y α−1 
, (3b)

he generalized nonlocal model (2) reduces to the fPDE model (1).

n the kernel ( 3b ) for dispersive flux in space, the Heaviside step

unction H ( y ) defines upstream space nonlocal transport (if large

ackward diffusion is negligible), and the Dirac delta function δ( τ )

efines a time-local kernel. Model (2) provides the flexibility to se-

ect appropriate kernels to describe various memory functions in

ime and space that can lead to the complex dynamics observed in

atural geological media, including those discussed below. 

. Solid Earth dynamics: processes and potential applicability 

f fractional calculus 

We separate the solid Earth processes into three groups, based

n their location and scale. Internal Earth dynamics cover motion

rom the inner core to the crust ( Table 2 ). Large-scale Earth sur-

ace dynamics occur at the land surface ( Table 3 ). Lastly, some solid

arth processes have limited vertical scales, such as the chemical

eathering of rocks and minerals. 

.1. Earth internal dynamics 

.1.1. Inner core rotation 

Earth’s solid, anisotropic inner core, consisting of iron alloy with

 radius of about 1220 km, resides concentrically within the much
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Table 2 

Earth internal dynamics. 

Internal dynamics Major driving force Spatiotemporal 

scales 

Major triggers Previous models Anomalous 

dynamics 

Possible fPDE 

Inner core rotation Magnetic coupling 

between the 

electrically 

conductive inner 

core and the 

geomagnetic field 

10 3 ∼10 6 m 10 0 ∼10 4 

year 

Coupled with other 

processes, such as outer 

core dynamics 

(1) Deterministic, 

reverse model for 

rotation rate 

(2) Part of the 

geodynamo models 

Not clear due to 

limited data 

(1) A fractional- 

order angular 

momentum model 

(2) Fractional-order 

dynamo models 

Outer core (1) Energy provided 

by the slow growth 

of the inner core 

(2) Heat flow from 

the inner core 

10 3 ∼10 6 m 

10 0 ∼10 4 year 

- Convection due to heat 

flow from the inner core 

- Rotation is supplied by 

the Coriolis effect 

Numerical 

geodynamo model 

Non-Gaussian 

distribution of the 

axial dipole 

(1) A fractional 

dynamo model 

(2) A continuous 

time random 

maximum model 

Lower-mantle flow Buoyancy 10 4 ∼ 10 7 m 10 6 ∼
10 9 year 

Slab push; plate pull Multi-dimensional 

mantle flow model 

Anomalous 

transport caused by 

multi-scale cycles 

of mantle flow 

fPDE is needed to 

release the 

prohibitive 

computational 

burden of current 

models 

Upper-mantle flow Buoyancy 10 4 ∼ 10 6 m 10 5 ∼
10 7 year 

(1) Large-sale movement of 

plates; 

(2) Small-scale convection 

may dominate 

upper-mantle deformation 

(1) Two-component 

flow models 

(2) Various 

software suites for 

1-d to 3-d mantle 

flow modeling, i.e., 

CitComs which is 

the standard 

thermal-chemical 

convection model 

[Tan et al., 2014] 

Thermal or 

chemical 

convection can 

exhibit anomalous 

behavior in 

heterogeneous 

systems 

Fractional version 

of the 

thermal-chemical 

convection model 

Crustal deformation Stress 

(compression, 

tension, and shear 

stress) 

10 1 ∼ 10 4 m 10 −1 

∼ 10 2 year 

Temperature, pressure, 

deformation rate, and rock 

composition 

Elasticity equation Rock deformation 

affected by internal 

and external 

factors, hard to be 

predicted by 

deterministic 

models 

(1) Fractional 

elasticity equation 

(2) Spatiotemporal 

fPDE model may 

capture mountain 

uplift 

Table 3 

Earth surface dynamics: properties and potential application with fPDEs. In the column labeled “Spatiotemporal scale”, the units are meters for space and years for time. 

Earth surface Major driven Spatiotemporal Major triggers Current model Anomalous Possible fPDE 

dynamics force scales dynamics 

Mass wasting Gravity 10 −1 ∼10 3 m 

10 −7 ∼10 2 year 

Excessive water, 

and earthquakes 

Local momentum 

equation 

Competing 

anomalous 

transport with fast 

moving and long 

retention stages 

Two-phase coupled fPDE 

model 

Aeolian sand dune growth 

and migration 

Wind 10 0 ∼10 4 m 

10 −4 ∼10 2 year 

Turbulent wind 

flow, sand supply, 

and sand 

interaction 

Standard transport 

model under variable 

wind velocity 

Super-diffusion in 

windward side, and 

sub-diffusion in 

leeward side 

Turbulent 

wind + multi-dimensional 

spatiotemporal fPDE with a 

space-dependent index 

Glacial erosion-deposition Gravity 10 1 ∼ 10 6 m 10 1 ∼
10 6 year 

Climate, hydrologic 

condition (i.e., 

debris 

concentration and 

flux) and properties 

of the underlying 

bedrock 

(1) Standard (the 

simple power-law) 

erosion law, valid only 

for small scale erosion 

(2) Depositional 

processes are difficult 

to model 

Potential 

anomalous 

transport sensitive 

to the erosional or 

depositional 

process 

(1) Fractional-calculus 

based novel erosion law to 

capture larger-scale 

landscape models by 

upscaling small-scale 

processes 

(2) Extend the fPDE for 

glacial deposits 

l  

t  

t  

p  

f  

o  

m  

a  

b  

c  

b  

o

 

r  

f  

t  

a  

v  

t  

d  
arger fluid outer core, and rotates 0.2 ° to 0.3 ° per year faster than

he mantle [57] . Travel-times between seismic body waves show

hat this rate corresponds to a speed of a few tens of kilometers

er year for the inner core around the equator [58] . The slow dif-

erential inner core motion (with the rotation rate likely changing

n a decadal time scale [59,60] ) was long believed to be driven by

agnetic coupling between the electrically conductive inner core

nd the geomagnetic field [60,61–64] . The toroidal field generated

y the outer core [61] and convection driven by the temperature

ontrast between the rigid boundaries of the inner core and/or
uoyancy flux may affect the angular velocity and/or growth rate

f the inner core [65] . 

Deterministic models were developed for inner core differential

otation [58,66,67] , which are not physical process-based models

or inner core dynamics, but inverse models (given seismic wave

ravel-times) to calculate, for example, the inner core rotation rate

nd velocity perturbation (see Eq. (2) in Song [67] ). The inner core

elocity perturbation is a (local) function of many controlling fac-

ors, including latitude, longitude, spin axis, time, and depth. In ad-

ition, dynamo models were also used widely to calculate angular
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velocity for inner core coupled with outer core dynamics [60] , and

are discussed further below. 

It is possible to describe the randomness and anisotropy of in-

ner core rotation due to the system heterogeneity using a stochas-

tic model like the vector fPDE, since the impact of system in-

homogeneity on target dynamics usually cannot be captured effi-

ciently by standard deterministic models. In addition, solid iron al-

loy in the inner core can precipitate from the liquid outer core, and

such recharge across the outer-inner core interface is not constant

but rather changes with time and position, resulting in a random

process that challenges the application of deterministic models.

A fractional-order angular momentum model might be applied to

characterize inner core rotation. The challenge is, however, the lim-

ited data in model development and parameterization. Inner core

rotation is also closely linked to other large-scale dynamics, espe-

cially outer core flow, and therefore, a coupled fPDE model might

be needed to simulate the motion of the inner and outer cores. 

3.1.2. Outer core flow 

The outer core consists of a liquid iron alloy that can flow. Ac-

cording to the geodynamo theory, convective currents in the outer

core are driven by heat flow from the inner core and these currents

are organized into rolls by the Coriolis force, ultimately generat-

ing the Earth’s magnetic field [68] . It has also been suggested that

the slow growth of the inner core, mentioned in Section 3.1.1 , may

provide an energy source that helps drive the geodynamo [63] .

The outer core dynamics may also lead to geomagnetic reversals,

where the temporal interval between subsequent magnetic reverse

records is not uniform, but rather random. Multiple components

might be contributing to the historic reversal of the magnetic field,

where some components are periodic and others are not, resulting

in irregular inter-arrival times that might not be reliably quantified

by deterministic models. 

Outer core convection models were developed to solve cou-

pled equations describing convective motions and dynamo action.

For example, in the popular numerical dynamo model “MaglC3”

[69] , the Navier–Stokes equation in the Boussinesq approxima-

tion (for magnetic velocity) takes the standard form, and the

convection-transport equation (for both magnetic induction and

super-adiabatic temperature) also assumes normal diffusion. Nu-

merical results revealed both Gaussian and non-Gaussian (with ap-

parent tailing behaviors) distribution for the axial dipole, which

can cause geomagnetic field reversal. Self-consistent dynamo mod-

els were also applied to reproduce geomagnetic reversals [70] . 

A prospect of fractional calculus for outer core dynamics is to

generalize local diffusive terms in the previously developed dy-

namo models (such as the standard diffusion equations mentioned

above) using nonlocal, fractional calculus to efficiently capture the

impact of local heterogeneity on outer core convective motions.

Considering the extremely limited observation, solutions from pre-

vious dynamo models with fine-resolution parameters can be used

to guide the development of the fractional-version model. The

challenge is that standard dynamo models are extremely difficult

to solve. However, when a fractional-order derivative replaces an

integer-order one in the governing equations, time and/or space

dependent parameters can be upscaled, resulting in constant pa-

rameters. This mathematical simplification is similar to the kine-

matic simplification of the nonlinear dynamo models, and hence,

the introduction of fractional calculus may partially relieve the

computational burden of the dynamo models. 

Another simplification of the self-consistent dynamo models

could be the adoption of the continuous time random maximum

(CTRM) model, proposed by Benson et al. [71] , to quantify the

magnetic reverse events. In the CTRM model, the irregular inter-

arrival times between magnetic reversals may follow the tempered

stable density applied by Meerschaert et al. [41] for hydrologic dy-
amics, which generalizes the widely used, standard stable density

see, for example, Benson et al. [71] ). This tempered stable density

s the universal model for travel-time distributions in many hydro-

ogical and environmental processes [72,73] . 

.1.3. Lower mantle convection 

The lower mantle (from a depth of ∼650 km down to 2900 km)

omposition is not precisely known, as samples of inclusions in di-

mond, which provide our only direct constraints, are sparse [74] .

inerals in the lower mantle are most likely high-pressure equiv-

lents of peridotite and include Fe-periclase, MgSi-perovskite, and

aSi-perovskite (e.g., Kaminsky [75] ). Most of the lower mantle is

olid, with only a few percent melt, which is likely concentrated

n the lower-upper mantle transition zone [76] . Lower mantle con-

ection is slow, likely accommodated by diffusion (non-Newtonian)

reep of the Earth’s solid silicate mantle, caused by convection cur-

ents carrying heat from the interior of the Earth to its surface

77,78] . Different convective models exist. For example, some stud-

es advocated that convection in the mantle is two-layered, with

he upper mantle being distinct from the lower mantle [79] . Other

tudies also suggested whole-mantle convection and/or some type

f hybrid model where flow between the upper-lower mantle oc-

asionally “breaks through” [80] . 

The driving force of mantle flow is the buoyancy force gener-

ted by thermally-induced density anomalies [81] . Typical man-

le convection speed is < 20 mm/year, but it can vary significantly.

eeper mantle convection cycles can be close to 200 million years,

hile a single shallow convection cycle can be as fast as 50 million

ears. The convection of lower mantle near the outer core is much

lower than the small-scale convection in the upper mantle, likely

ue to the change of viscosity and pressure with depth. 

Numerical models have been developed to simulate mantle

ow at regional and global scales. For example, Hu and Liu

82] and Liu and Hasterok [83] applied a four-dimensional (spa-

ial coordinates plus time) model to simulate mantle flow be-

eath the Americas using a data assimilation approach that incor-

orates seismic tomography. The grid-based numerical model con-

ains 10 1 ∼10 2 million grids and 10 2 –10 3 million unknown parame-

ers, requiring challenging computation. Mantle flow may contain

ulti-scale cycles, which can be a mixture of local, intermediate,

nd regional cycles. There are also significant spatial variabilities

n the lower mantle convection as well. For example, there are re-

ions associated with both “small-scale” upwellings (i.e., plumes)

nd very massive upwellings (i.e., super-plumes). The spatiotem-

orally multi-scale mantle convection is similar to the mixed flow

ines in groundwater, motivating the application of a nonlocal dy-

amic model, such as a fPDE. 

.1.4. Upper mantle convection 

Upper mantle (from a depth of ∼410 km down to the lower

antle) composition and mineralogy are better constrained than

hat of the lower mantle because xenoliths from volcanic eruptions

re available, which can guide the development of numerical mod-

ls. The upper mantle composition is dominantly peridotite with

bundant olivine, garnet, and pyroxene in the upper part and wad-

leyite and ringwoodite near the transition into the lower mantle

84] . The mineralogy differences from the lower mantle are mostly

ue to the lattice structure dependence on temperature and pres-

ure, and to a lesser extent, on slight differences in composition.

he upper mantle (including the transition zone) is likely domi-

ated by deformation accommodated by both diffusion and dislo-

ation creep [77,78] . Mineral lattice types affect mineral deforma-

ion and flow, which in turn, affect mantle flow dynamics, requir-

ng different physical models between the lower and upper mantle.

here is distinction between upper and lower mantle anisotropy,

n relation to mineral deformation and flow. Anisotropy might be
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uch more developed in the upper mantle, due likely to the lat-

ice preferred orientation of olivine (dislocation creep), while the

ower mantle is mostly isotropic. 

Various models have been proposed to simulate upper mantle

onvection. For example, Frank [85] proposed a two-component

onvection model to quantify upper mantle movement, with one

omponent representing percolating melt fluid and the other rep-

esenting a solid plastic flow. Froidevaux and Schubert [86] pro-

osed a one-dimensional (1 − d ) shear flow model to quantify up-

er mantle dynamics beneath a continent, by accounting for vis-

ous dissipation as well as a temperature- and pressure-dependent

onlinear mantle rheology. Humphreys and Hager [87] developed

 kinematic model to access upper mantle deformation beneath

outhern California. One of the most commonly used models is the

itComs software suite, originated developed by Moresi and Solo-

atov [88] and extended by others (see Tan et al. [89] ), which

an solve thermal-chemical convection governed by the conser-

ation of mass, momentum and energy (i.e., standard partial dif-

erential equations or PDEs). Similar software suites, including

ource packages and user manuals, such as ASPECT, ConMan, El-

ipsis3D, and HC developed to model mantle dynamics, can be

btained from the Computational Infrastructure for Geodynam-

cs ( https://geodynamics.org/cig/software/ ). Considering the ineffi-

iency of standard conservation models in capturing the nuances

f thermal-chemical convection in a regional-scale heterogeneous

ystem, fPDEs can be a potential alternative for upper mantle con-

ection modeling. 

In addition, the dominant driving force associated with upper

antle convection is debated. While it has long been believed that

he strongest deformation in the mantle was controlled by large-

cale plate motion (i.e., the push of mid-ocean ridges, or slab pull),

ecent high-resolution seismic imaging has revealed that upper

antle flow beneath the ocean’s tectonic plates may be dominated

y small-scale convection [90] . Hence, both large- and small-scale

ynamics need to be accounted for when modeling upper man-

le convection, challenging the traditional modeling approach and

otivating the application of stochastic models such as the fPDE

fficient for multi-scale dynamics. 

.1.5. Crustal deformation 

The continental crust is highly heterogeneous, but on average,

s granodiorite in composition [91] . Crustal deformation produces

eologic structures such as joints, faults, folds, and foliation. Both

rittle deformation (i.e., cracking and fracturing) and ductile de-

ormation (i.e., bending and flowing) occur in rocks subjected to

tress. The type of deformation is mostly controlled by the strain

ate, temperature, and pressure with lesser dependence on miner-

logy. Brittle deformation is dominant in the upper crust, and duc-

ile deformation is dominant in the lower crust, due to the depth-

ependent temperature and pressure. Oceanic crust also undergoes

ll the same deformation processes as continental crust (i.e., frac-

uring, flowing, etc.). 

Crustal displacement can be calculated by the elasticity equa-

ion, which was developed into the popular software PyLith [92] .

ther models and software suites for short-term crustal dynam-

cs can be obtained from the Computational Infrastructure for Geo-

ynamics ( https://geodynamics.org/cig/software/ ). It is noteworthy

hat the elasticity equation was built upon the standard conserva-

ion of momentum, which may not be efficient if anomalous de-

ormation dominates. In addition, brittle fracture development can

lso be affected by other factors, such as the motion of thermal flu-

ds, rock mechanics, and regional press fields (tectonics). Therefore,

eterministic prediction of fracture formation and extension is dif-

cult even at the sedimentary scale. The hydrofracing technique,

sed to enhance oil/natural gas productivity, is another example

f where this type of assessment is important. Stochastic models
hould be used to account for the random deformation (transient

r long-term) of rocks under real-world conditions. 

Crustal deformation can lead to mountain uplift related to sub-

uction, continental collision, and continental rifting. The man-

le cannot maintain high shear stresses; therefore, the crust be-

eath mountains approaches isostatic equilibrium over long time

rames. Thus, crustal thickness and density variations are criti-

al parameters for modeling mountain building. Such modeling

s complex due to the involvement of heterogeneous deformation

echanisms, transient behavior, and feedback mechanisms (e.g.,

eaumont et al. [93] ). For example, during the long-time scale of a

ollisional orogeny or convergent-margin orogeny, horizontal com-

ression causes the crust to thicken vertically, which in turn, af-

ects the geothermal gradient. Removal of lithospheric mantle from

he base of a plate can also cause the remaining lithosphere to rise

nd form mountains due to the replacement of dense cold rock

ith less dense hotter rock. Shorter time scale processes can also

ause surface uplift or mountain building. For example, the addi-

ion of igneous rock to the crust (i.e., volcanic eruption or mag-

atic intrusion) can generate mountains resulting from the addi-

ion of high temperature, low density rocks. In rift environments,

ot asthenosphere rises and heats the lithosphere, resulting in up-

ift. Thermal expansion in the crust due to collision, rifting, and

upture is typically a short-term mechanism for mountain uplift.

t is our own expectation that the rate of mountain uplift can

ramatically change with time, with fast periods being intermin-

led with relatively stationary periods or even erosional events.

ence, mountain uplift might be better described by a spatiotem-

oral fPDE model (than a deterministic model), where the space

PDE describes fast uplift and the time fPDE captures the opposing

eriods. 

.1.6. Magma intrusion 

Numerical models have been developed to simulate the em-

lacement of igneous bodies (sills/dikes), called the sill/dike in-

rusion model or magma intrusion model [94] . Magma emplace-

ent velocities can vary dramatically. Some mantle rocks en-

rained within magma rise rapidly to the surface, with veloci-

ies of about 4 m/s [95] . Demouchy et al. [96] estimated that a

enolith can reach the surface from 60 to 70 km depth in sev-

ral hours, a sparingly rapid rise, comparable to ascent rates for

imberlite magmas. Alternatively, other rocks may reside within

agma chambers for extended periods of time, allowing partial

r complete re-equilibration [97] . Hence, the time between two

ubsequent magma ascents can have a broad distribution, which

ight be better characterized by tempered one-sided stable den-

ity, as suggested by Cvetkovic [73] , than a normal distribution

r the standard stable density [4] . A tempered time fPDE there-

ore could be used to simulate the motion of magma or other ig-

eous processes in the Earth’s crust and lithospheric mantle. In

ddition, the magma temperature/cooling variability might also be

imulated using the fractional-order Stefan model. 

To summarize the discussion regarding internal Earth dynam-

cs, regional and/or global convection within the core and mantle

ontains multi-scale dynamics occurring in a heterogeneous sys-

em, with limited system information and multiple unknown pa-

ameters, challenging traditional local models and motivating the

pplication of fPDEs. Unlike the Newtonian fluids observed in the

ydrosphere, here the fractional version of non-Newtonian flow

odels for outer core flow and magma intrusion and viscoelas-

ic models for mantle convection will likely be needed. In ad-

ition, deep, internal Earth dynamics are correlated. For exam-

le, as previously discussed, outer core flow is linked with in-

er core rotation, and mantle motion drives continental drift, re-

uiring coupled fPDE models. Because more information is avail-

ble for shallower Earth processes than deeper dynamics, fractional

https://geodynamics.org/cig/software/
https://geodynamics.org/cig/software/
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calculus and fPDEs should first be developed for these shallow

systems. 

3.2. Large-scale Earth surface dynamics dominated by physical 

processes 

Large-scale Earth surface processes have long been interpreted

by numerical models, including the standard diffusion equation,

advection/wave equation, and non-Newtonian flow equations (see,

for example, Pelletier [98] ). Typical large-scale Earth surface dy-

namics, especially geomorphic transport processes such as mass

movement, sedimentary deposition, river networks, and Aeolian

sand dune migration, can involve a wide spectrum of temporal

and spatial scales and motivate the application of nonlocal trans-

port theory. Indeed, watershed hydrologists have already suggested

the fractional-order Eick’s law as a possible alternative to the ge-

omorphic transport law after the first STRESS (Stochastic TRans-

port and Emergent Scaling in Earth-Surface processes) workshop in

2007 [99] , but the application of fPDEs for real-world geomorphic

transport processes remains an open research question. The driving

forces and dynamics for different geomorphic transport processes

can differ significantly in different depositional environments, re-

quiring systematic exploration for each process and specific treat-

ment of the fPDE model. 

Landscape evolution is a random process that is difficult to

model using deterministic methods, due to the large number of

processes and factors (such as fluvial erosion, slope processes, tec-

tonic uplift, climate, and lithology) operating over a wide range of

spatial and temporal scales [100] . For example, sedimentary de-

posits with time periods ranging from individual flooding events

to geologic time are the result of erosional-depositional processes

with a heavy-tail (i.e., power-law) distribution rate [101,102] . Effi-

cient characterization of scale-dependent dynamics is one of the

major advantages of fPDEs compared to standard models. For this

reason, the fPDE models have been recommended by watershed

hydrologists for bed-load transport in rivers [24,103] , transport on

hillslopes [22,104] , and transport in river networks [99,105] . In the

following, we discuss three important Earth surface processes in

different systems that have not been focused on by the previous

studies ( Table 3 ). 

3.2.1. Mass movement in the fluvial system 

The most straightforward application of fractional-derivative

models in solid Earth dynamics might be mass transport. Mass

movement, also called mass wasting or landslide, refers to the

downslope movement of mud, regolith (i.e., soil, sediment, and de-

bris), rock, or snow/ice under gravity [106] . Mass movement plays

a critical role in the rock cycle, affecting landscape evolution and

producing stream valleys when mixed with running water. Five

factors can induce mass movement: water, oversteepened slopes,

removal of anchoring vegetation, earthquakes, and volcanic erup-

tion, where earthquakes and excessive water (from a winter snow

melt or a heavy rain storm) are the two most common triggers.

Mass movement, however, can also occur without triggers. Slope

materials may weaken over time or random, unpredictable events

can occur. The variety of triggers, complex topography with multi-

scale heterogeneity, and potential interactions within moving ma-

terials can lead to high uncertainty in quantifying downslope mass

movement when a deterministic model is used. 

We classify subaerial mass movement into three groups, whose

properties may guide the selection and development of fPDEs. We

note that submarine landslides occur in oceans and therefore are

not considered by this study. Group 1 exhibits extremely slow ve-

locities, represented by (soil) creep caused by alternating expan-

sion and contraction of the surface material due to freeze-thaw cy-
les that can last for years. Solifluction is a specific type of creep

hat is common in regions underlain by permafrost, and slump is

nother relatively slow moving of a mass of rock or unconsolidated

aterial as a unit along a curved surface. These slow movements,

hich may represent sub-diffusive processes, may be quantified

y the time fPDEs. Mass movements in Group 2 have extremely

ast velocities, and this group includes avalanches and rockslides

hat can occur within seconds or minutes, which might generate

uper-diffusive motion and might be captured by the space fPDEs.

roup 3 contains movement of material with variable speeds, in-

luding debris flow and mudflow, which can be mixtures of sub-

nd super-diffusion; therefore, this group requires mixed space and

ime fPDEs. 

We select soil creep as an example to develop fPDE models.

oil creep is the most widespread (and also the least understood)

rosion process on soil-mantled hillslopes [107] . Soil particles un-

ergoing downslope creep are displaced in wetting-drying cycles

ver many years, a process analogous to mechanical dispersion.

ield experiments by Heimsath et al. [107] using single-grain opti-

al dating, showed that soil creep involves independent movement

f mineral grains that can be intermittently reburied or eroded by

verland flow upon reaching the surface. Therefore, the motion of

reeping soil can be treated as independent and identically dis-

ributed (i.i.d.) random variables such as α-stable random noises,

hile the buried soil can be treated as immobile particles before

hey return to motion. This leads to a spatiotemporal fPDE, which

s similar to the spatiotemporal fractional-derivative model pro-

osed to simulate bed-load sediment transport in rivers that in-

olves alternate transportation and storage [25] . 

FPDE models may also be developed for debris flow. Debris

ows with destructive power can be one of the most hazardous

onsequences of rainfall, especially on burned hillslopes [108,109] .

torm-trigged debris flows in watersheds are best modeled as ran-

om processes because (1) they consist of a broad distribution of

rain sizes, mixed and interacting with rapid-flow fluid; and (2)

heir dynamics depend on many different factors with multi-scale

eterogeneity, such as hillslope morphology, flow properties, pore-

uid pressure, climate factors, and soil properties, which cannot

e measured exhaustively at all relevant scales. Hence, stochastic

odels are needed to account for the randomness and uncertainty

n quantifying the occurrence, yield, and dynamics of the multi-

hase, gravity-driven debris flow. Most of the existing stochastic

odels have focused on landslide-trigged debris flows, including

arious physical-based models (i.e., mass-balance and momentum

odels) developed to simulate the dynamics of debris flows, such

s the general two-phase model [110] , the depth-averaged mod-

ls [111,112] , and the GIS-based cell model [113] . We can adopt the

dea in Rengers et al.’s [114] process-based model to combine a

ainfall-runoff model with a spatiotemporal fPDE model to capture

he random dynamics in storm-trigged debris flow (a preliminary

PDE was developed for water flow along land surfaces at all scales

y Zhang et al. [23] ). Dynamics of the solid phase (i.e., weathered

oil and fragmented rock) can be described by random displace-

ent with random motion times, whose probability density func-

ions will be defined and then validated using field observations of

ebris flow discharge (see, for example, Cannon and Gartner [115] ).

In addition to the fPDE model (1), we can also apply the tem-

ered one-sided stable density model to characterize the distribu-

ions of both motion size and trapping time for targets in mass

ovement [28,72,73] . A truncated Pareto distribution, whose sum-

ation can converge to the stable density, was also found to effi-

iently capture heavy-tailed geophysical distributions (such as the

ultiple-rate mass exchange between mobile water and immobile

atrix in soils and aquifers) [23,116,117] . This shows the poten-

ial applicability of the tempered one-sided stable density function
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or quantifying mass movement dynamics, especially the extreme

vents with relatively low probabilities and large uncertainty. 

.2.2. Aeolian sand dune formation and movement in the Aeolian 

ystem 

One fourth of the Earth’s land surface is covered by arid re-

ions, where desert sand dunes are the most common depositional

andform. Dunes display a variety of shapes and sizes, depend-

ng on the character of the wind and the sand supply. There are

ve main types of dunes with different cross-beds, including (1)

archan dunes, with a crescent shape whose tips point downwind;

2) star dunes, consisting of overlapping crescent dunes formed

y frequent shifts in wind direction; (3) transverse dunes, which

re wave-like dunes formed when enough sand accumulates for

he ground surface to be completely buried (but with only moder-

te winds); (4) parabolic dunes, formed when strong winds break

hrough transverse dunes to make new dunes whose ends point

pwind; and (5) longitudinal dunes, formed due to abundant sand

nd a strong, steady wind. Of these dunes, the crescent-shaped

archan dunes are found all over the world and have been studied

xtensively. Isolated barchan dunes can be 9–30 m high and 370 m

ide, and they can migrate with the wind at a rate varying from 1

o 100 m per year. 

Quantification of sand dune migration has critical implications

or the ecosystem, economy, and society. Numerical simulation of

eolian dune dynamics using physical models, however, remains a

hallenge after more than four decades of work. This challenge is

ue to the complex interactions between sand dune morphology,

urbulent wind flow, and sediment transport that exhibit multi-

cale heterogeneity (see, for example, Livingstone et al. [118] ). In-

eraction between dunes may also affect dune transport (including

ovement and growth) since sand dunes frequently propagate as

 group and form arid sand seas. 

Since the 1970s, various physical models have been developed,

hich mostly focus on the dynamics of barchan dunes. The early

nalytical approach was developed by Jackson and Hunt [119] and

mproved by others (e.g., Wippermann and Gross [120] ; Weng

t al. [121] ) to obtain the analytical expression of wind-induced

ransport for an isolated dune. A heuristic approach was proposed

y Zeman and Jensen [122] and applied further by Sauermann

t al. [123] to model airflow over a dune. A continuum salta-

ion model, based on (standard) momentum conservation, was also

eveloped [124,125] , assuming equilibrium in sand flux. A popu-

ar linear expansion model was then developed by Andreotti et

l. [126] , Lima et al. [127] , Schwämmle and Herrmann [128] , and

ersen [129] to simulate barchan shape and migration patterns.

omputational fluid dynamic (CFD) models, which are likely the

ost reliable and detailed physical models, were applied to de-

cribe flow over Aeolian dunes [130] (for transverse dunes). How-

ver, a detailed distribution of turbulent wind velocity is required,

hallenging the applicability of CFD models and motivating the ap-

lication of fPDE models for grouped barchans. Recently, a cellu-

ar automaton model was proposed to simulate vertical sorting in

ranular mixtures (i.e., aggregating the small-scale, individual grain

otions and saltation) for steady unidirectional flow conditions

131] , a specific wind condition with limited applicability in the

eld. Advanced physical models are still needed to understand the

ature of sand dune dynamics, with additional help from recently

eveloped and significantly enhanced field monitoring techniques. 

Complex dynamics and random nature in dune development

otivate the application of stochastic models. We expect that the

ntroduction of fractional calculus in Aeolian dune simulations may

nhance standard models in at least four ways. First, fractional

erivative terms can capture the impact of sub-grid variation in

ind properties (speed and direction) and sand heterogeneity

n dune dynamics, which cannot be mapped exhaustively by
tandard models [35] . Second, turbulent wind (with an upper

imit in velocity) can cause complex sand dynamics, whose motion

an be (better) described by (tempered) Lévy motion related

o fractional derivative models. Third, sand movement can have

emory in space (especially for erosion on the windward side)

nd time (when buried below the surface or deposited on the

eeward side), which can be efficiently captured by space and time

ractional derivative models. The buried sand particle eventually

eturns to surface and migrates again, after wind removes the top

ayer, leading to a finite, maximum trapping time. Fourth, if sand

une evolution is not a simple equilibrium system, but rather a

inetic process with varying total mass, then its dynamics can

e captured by the kinetic, fractional-in-time derivative model. It

s also noteworthy that the fPDE may require a space-dependent

ractional index, leading to the variable-index fPDE discussed in

ection 4.3 . For example, kinetics of sand at the windward side

ay require a spatiotemporal fractional derivative term, due to

oth erosion and fast movement of sand, while the leeward side

f dunes may require a time fractional derivative term due to

andom retention of sand particles. 

.2.3. Glacial erosional–depositional processes 

Subglacial erosion is important for the present topography of

arth’s surface, although the mechanisms driving subglacial ero-

ion are not very clear [132] . There are two major forms of ero-

ion: abrasion and quarrying. Abrasion can polish the surface of

he underlying rock and generate glacial striations. Quarrying in-

ludes both plucking and bulldozing impacts (i.e., lifting and push-

ng of rocks), which were modeled recently by Ugelvig et al. [132] .

any factors can affect the rate of subglacial erosion. For example,

ydrologic conditions (including drainage efficiency, which regu-

ates the effective pressure, and surface slope) as well as fracture

ensity and orientation of the underlying bedrock can affect the

uarrying rate [132] . 

Local models have been used to describe glacial erosion. In

ost glacial landscape evolution models, the erosion law takes the

orm [133-135] : 

 = a u 

b , (4) 

here E is the glacial erosion rate, u is the basal sliding speed, and

 and b are constants, where b = 1 is typically assumed to reach a

imple linear relationship between erosion and sliding. This law ( 4 )

s valid only at the local scale. Another model related to glaciers,

he glacial isostatic adjustment model, is commonly used to eval-

ate the impact of mass or thickness change of ice sheets on the

ise of land mass. In this model, the sea-level change ( S ) is usually

odeled by [136] : 

S ( θ, λ, t ) = C ( θ, λ, t ) 

×
[∫ t 

−∞ 

d t ′ 
∫ ∫ 

�
d �′ L 

(
θ ′ , λ′ , t ′ 

)
G 

(
ν, t − t ′ 

)
+ 


�( t ) 

g 

]
(5) 

here θ and λ denote the latitude and longitude, respectively; C

enotes the ocean function ( = 1 for ocean and 0 for continent); L

s the surface mass load per unit area; G denotes the kernel; and

he last term on the right-hand side (RHS) of ( 5 ) is added for mass

onservation purposes. A nonlocal model may be needed to gen-

ralize the simple relationship ( 4 ) to capture large-scale subglacial

rosion significantly affected by the small-scale variation of hydrol-

gy conditions and rock properties. It is also interesting to replace

he local kernel in ( 5 ) by a nonlocal kernel, to capture sea-level

hange due to the nonlocal impact of controlling factors. 

Numerical modeling of glacial depositional processes remains a

istorical challenge. Glacial motion, which is important for the rock

ycle and hydrologic cycle, occurs mainly as basal sliding (where

he entire glacier slides over its bed), plastic flow within the ice
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(due to plastic deformation), and glacial surges (i.e., movements of

large sections of ice up to 100 times faster than normal). Glacial

motion leads to two types of deposits: (1) landforms made of

glacial till (which are sediments deposited directly by glacial ice)

such as moraines, and (2) landforms made of stratified drift (lay-

ers of sand and gravel accumulated in braided stream channels),

including outwash plains and ice-contact deposits, such as kame

and esker. Simulation of glacial deposits is not trivial. For example,

moraine evolution is affected by debris concentration, ice melt-

rate, and debris flux [137] , which vary randomly in space and/or

time and are difficult to measure in the field. Hence, stochastic

models such as fPDEs may be preferred to describe the glacial de-

positional processes. 

To summarize, large-scale Earth surface dynamics can occur in

different systems and are driven by various forces, requiring dif-

ferent fPDEs (or fPDEs with different memory functions). Partic-

ularly, the response of these dynamics to externally-driven forces

and internal interactions may lead to complex memory functions

expressed by fPDEs (2). In addition, poor predictability is one of

the major shortcomings of fPDEs (see further discussion in Section

4.1 ), but the Earth surface dynamics mentioned above, except for

the elusive glacial erosion and deposition, may improve model pre-

dictability. With a wide range of observed information (such as re-

mote sensing and geophysical survey data) and enhanced moni-

toring techniques, there is an unprecedented opportunity to build

a (at least partially) predictive fPDE model. For example, mem-

ory kernels in the generalized stochastic model (2) can be tested

using observed debris flow yields, whose potential final format

(i.e., from power law to tempered one-sided stable density) might

be linked with the most pertinent, observable items (such as the

reach length and width of entrainment/deposition, watershed size,

lithology, precipitation depth, duration and overall shape, and flood

volume, runoff coefficient and peak flows). 

3.3. Small vertical-scale earth surface dynamics 

Small-scale surface processes (usually with a growth/erosion di-

rection perpendicular to the local surface), such as crystal growth,

rock/mineral weathering, and pedogenesis, are major research tar-

gets for mineralogists, soil scientists, and geomorphologists. Under

real-world geological conditions, reliably and efficiently modeling

these dynamics remains a challenge. 

3.3.1. Crystal growth (nanometer to millimeter scale) 

Mineral crystal growth is important for all geological processes,

including the formation of cements in sedimentary rocks, the

filling of fractures to form veins, recrystallizing rocks by solid-

state processes during metamorphism, and growing crystals from

magma to form igneous rocks. The kinetics of crystal growth can

be affected by many factors, including liquid properties (i.e., level

of supersaturation and deposition rate), crystallographic anisotropy,

physical properties, the crystal’s surface morphology (i.e., free en-

ergy barriers, segregation of impurities, and the nucleation and

spreading of clusters at the crystal surface), thermal fluctuations,

and/or evaporation rate. 

Tremendous effort s have been made to quantify crystal growth

using mathematical models, particularly including the following

four common models. First, the well-known, simplified Frank’s

model [138] shows that the velocity of the crystal surface prop-

agation is proportional to the local surface orientation, which is

strongly related to substrate geometry rather than to physics. Sec-

ond, the simplest mathematical description for a perfect impurity-

free crystal is the solid-on-solid (SOS) model, which assumes an

exponentially-declined deposition rate and multiple effective evap-

oration rates in a simple mass balance format (see Weeks and

Gilmer [139] (Eq. (3.5)) for the dynamics of crystal growth). Third,
he highly-cited Burton-Cabrera-Frank (BCF) model describes a

rystal’s density evolution using the following PDE [140] : 

∂ρ( z, t ) 

∂t 
= D s 

∂ 2 ρ( z, t ) 

∂ z 2 
− τρ( z, t ) + F , (6)

here z is the direction perpendicular to the steps, ρ( z, t ) de-

otes the adatom density, D s is the microscopic surface diffusion

onstant of adatoms, τ defines the evaporation rate, and F is the

datom deposition rate. The BCF model ( 6 ) was built upon the

tandard mass balance law, where normal diffusion for adatoms

as assumed. 

Fourth, crystal growth can also be modeled by the well-known

ardar–Parisi–Zhang (KPZ) equation, a non-linear stochastic PDE

escribing the temporal change of the height h ( � x , t ) of the crys-

al surface at location 

�
 x and time t [141,142] : 

∂h ( � x , t ) 

∂t 
= v ∇ 

2 h + 

λ

2 

( ∇h ) 
2 + η( � x , t ) , (7)

here v > 0 is a constant (surface tension), λ is the kinetic coef-

cient, and η( � x , t ) is the Gaussian white noise (representing, for

xample, fluctuations of beam intensity) with a zero mean and the

ollowing variance: 

 η( � x , t ) η( � x ′ , t ′ ) 〉 = 2 D δd ( � x − �
 x ′ ) δd ( t − t ′ ) (8)

Here, D denotes a parameter and d denotes its dimension. The

rst term on the RHS of ( 7 ) describes relaxation of the interface,

nd the second term on the RHS of ( 7 ) is the lowest-order non-

inear term appearing in the interface growth equation (i.e., Taylor

xpansion of the surface growth rate; see Kardar et al. [141] ). The

PZ Eq. (7) is the general theory of surface growth models, such

s the Eden model (which describes the growth of specific types

f clusters growing by random accumulation), the surface fractal

odel (such as fractal landscape), and the SOS model mentioned

bove. The vector KPZ model ( 7 ) reduces to the following one-

imensional version: 

∂h ( x, t ) 

∂t 
= v 

∂ 2 h ( x, t ) 

∂ x 2 
+ 

λ

2 

[
∂h ( x, t ) 

∂x 

]2 

+ η( x, t ) , (9)

here the surface grows in a normal direction (perpendicular to

he space x axis), ∂h ( x, t )/ ∂x denotes the surface slope, and the

econd term on the RHS of ( 9 ) denotes the nonlinearity coming

rom this simple geometric effect. 

There are three primary motivations to apply a stochastic

odel, such as the generalized fPDE (2), to quantify crystal growth

inetics under natural geological conditions. First, crystal growth

inetics can be diffusion-controlled, especially under high super-

aturation conditions (see, for example, Collins and Levine [143] ).

here are multiple diffusive stages related directly to crystal

rowth and dissolution. For a crystal to grow, atoms and energy

eed to diffuse up to the substrate surface; while for a crystal to

issolve, atoms must be carried away [142] . Impurities, which can

e present in natural conditions, also diffuse to the surface to fa-

ilitate crystal growth [144] . Hence, crystal growth is a nonlocal

rocess [142] . Considering the natural heterogeneity in rock prop-

rty and liquid, it is most likely that some of the diffusion dynam-

cs can deviate from Fick’s diffusive law and significantly affect the

rystal growth rate. Second, atoms undergo random walking on the

rystal surface before they can merge, and Brownian motion has

een assumed by standard models. It is a logical expectation that

tempered) Lévy motion should replace Brownian motion for ran-

om atom jumps under natural geological conditions. Third, crys-

al growth might not always be continuous, but rather it may be

ixed with episodic fast growth and subsequent periods of disso-

ution. For example, episodic flow of high-pressure water in fault

ones can affect the dynamics of crystal growth. Seismic pumping

ue to shallow earthquakes provides an explanation for the tex-

ures of hydrothermal vein deposits associated with ancient faults,
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hich almost invariably indicate that mineralization was episodic

145] . Hence, crystal growth might be approximated by a CTRW

rocess with independent growth (or precipitation) and waiting (or

issolution) periods, a process which can be described by the fPDE

2). 

Indeed, various fractional versions of the KPZ model ( 7 ) have

een proposed, although none of them have been used for the

ctual crystal growth process yet. For example, Katzav [146] pro-

osed the following fractal KPZ equation for growing surfaces with

nomalous diffusion: 

∂h ( � x , t ) 

∂t 
= v ( ∇ αh ) + 

λ

2 

( ∇h ) 
2 + η( � x , t ) , (10)

here the operator 
α ≡ −(−
) α/ 2 (1 < α ≤ 2) is the fractional

aplacian. The same expansion was used by Xia et al. [147] , where

he standard second-order space derivative was replaced directly

y a space fractional derivative. Recently, Hoshino [148] replaced

he white noise in ( 7 ) by a fractional derivative term: 

∂h ( � x , t ) 

∂t 
= v 

(∇ 

2 h 

)
+ 

λ

2 

( ∇h ) 
2 + 

∂ γ

∂ t γ
η( � x , t ) , (11)

here γ is the same as the time index used in model (1). A space-

ractional KPZ model was proposed and solved numerically by Xia

t al. [147] , and a time-fractional KPZ model and its solution were

nalyzed by Abdellaoui and Peral [149] . 

The above models provide the preliminary fPDEs to quantify

rystal growth of minerals. By combining the time and space frac-

ional derivative terms introduced in these previous studies, one

btains the following fPDE (in one-dimension): 

∂ γ h ( x, t ) 

∂ t γ
= v 

∂ αh ( x, t ) 

∂ x α
+ 

λ

2 

[
∂h ( x, t ) 

∂x 

]2 

+ η( x, t ) , (12)

hich is the fractional version of the KPZ model ( 10 ). Model ( 12 )

an be solved numerically, for example, using the finite-difference

ethod proposed by Xia et al. [147] . Further extension of ( 12 ) fol-

owing the generalized fPDE (2) (plus the nonlinear term to cap-

ure the geometric effect) can be explored to capture the episodic

rowth and dissolution processes. It is also noteworthy that other

atural growth processes, such as tree ring growth (where the

ing width is affected by temperature, rainfall, and humidity), shell

ing growth (affected by sea-surface elevation, supply of nutri-

nt and calcite, salinity, and temperature), and speleothem growth

affected by precipitation and CO 2 concentration), share similar

ynamics and may benefit from the development of the above

tochastic models. 

.3.2. Rock/mineral weathering (nanometer to centimeter scale 

erpendicular to the surface) 

Weathering provides the material for sedimentary rock forma-

ion and is important for numerous geochemical cycles involv-

ng the lithosphere, hydrosphere, and atmosphere. The weather-

ng processes can be driven by complex physical, chemical, and bi-

logical factors involving plant and animal life, atmosphere, and

ater [150-152] . Specifically, changing environmental conditions

including precipitation, snow/ice, temperature, humidity, expo- 

ure, wind speed and direction, and biological activities) and tec-

onic events can result in a spatial-scale dependent weathering

ate, a time-scale dependent weathering response, and time-scale

ensitive weathering kinetics (i.e., episodic manner in transient

eathering), making the deterministic study of weathering dif-

cult. Some small-scale properties, such as the mineral reactive

urface area, can also affect chemical weathering rates [153] . Al-

hough vertical weathering only occurs at mineral surfaces and

overs the nanometer to centimeter scale, the horizontal spatial

cale for weathering can extend to entire plates [154] . The geolog-

cal time scale for weathering increases from thousands of years
such as the response of weathering to temperature perturbations)

o tens of millions of years (such as soil development in the trop-

cs along a gentle slope) [155] . Due to the scale dependence and

ultiple elusive controlling factors, weathering rates measured in

he laboratory can be significantly higher than field measurements,

hich is similar to the well-known trend for the diffusion-limited

hemical reaction rate observed by hydrogeologists (see the review

y Dentz et al. [156] ). It is also noteworthy that physical weather-

ng (or physical denudation) mainly depends on lithology, regional

elief, runoff, and other environmental factors, which are relatively

ess complex than those controlling chemical weathering. Hence,

n the following, we focus on chemical weathering. 

Various models have been developed to calculate chemical

eathering rates in the field. For example, Maher et al. [157] ap-

lied a multi-component reactive transport model (CrunchFlow) to

nterpret mineral precipitation/dissolution rates. Maher [158] also

inked the global bulk weathering rate to the fluid residence time

see their Eqs. (6 )–( 8 )) which has a wide distribution. A similar

teady-state weathering model was applied by Hren et al. [159] to

escribe the relative impact of reaction kinetics and rock supply

n weathering rates. Maher and Chamberlain [160] also treated the

eathering rate as a function of the tectonic regime. 

Chemical weathering rates at large scales (i.e., watershed to

lobal) have been typically analyzed with flux concentrations of

olute observed in streams, assuming a simple linear relationship

etween weathering rates and major controlling factor(s). This led

o steady-state partitioning models, calculating silicate weathering

eactions with both dissolved and solid weathering products [161] :

 = 

q d 
q w 

(13a) 

 C = 

C d q d 
C w 

q w 

(13b) 

here W denotes the weathering rate for the fraction of bedrock

hat erodes in solution, W C is the weathering rate for the fraction

f silicate dissolved from eroding bedrock, q w 

denotes the flux of

eathered bedrock silicate, q d denotes the flux of the dissolved

hemical, and C refers to concentrations with respect to the mass

f solid material ( C w 

) or the dissolved material ( C d ). 

In addition, the PROFILE model proposed by Sverdrup and

arfvinge [162,163] and applied widely by others [164–166] is a

teady-state soil chemistry model that can calculate the rate of

hemical weathering of soil minerals using the transition state the-

ry. The weathering rate of silicate minerals in soil was assumed to

e proportional to the exposed surface area of the mineral, the soil

oisture saturation, and the chemical driving force. For example,

he steady-state weathering rate for organic ligands was calculated

y Sverdrup [167] : 

 = A s C s Q (14) 

here R denotes the weathering (reaction) rate, A s denotes the

rea of active surface (i.e., the mineral surface that is wet and in

ontact with the soil solution), C s denotes the contents in the sur-

ace, and Q is the chemical rate per unit surface area. The steady-

tate rate of cation release by mineral weathering could also be

implified as [168] : 

 = 

K B [ B ] 
n 

f B 
(15) 

here K B is the rate coefficient for cation B, f B is the retardation

actor, [ B ] is the ion concentration, and n is the reaction order.

he above calculation of weathering rate contains high uncertainty,

ue, for example, to the unrealistic constraints imposed by the use

f the surface area equation (note that some parameters in the
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model, such as the surface area fraction, are almost impossible to

measure), as shown by Hodson et al. [168] . 

Weathering due to chemical transformations, combined with

physical deformations, was calculated by the steady-state chem-

ical mass-balance model proposed by Brimhall and collaborators

[169–172] . This simple model calculates the change of rock/soil

material thickness ε [dimensionless]: 

ε = 

ρr 

ρs 

C i,r 
C i,s 

− 1 , (16)

where ρs and ρr [ ML −3 ] are the density of soil and rock, respec-

tively; and C i [ MM 

−1 ] is mass concentration of the immobile ele-

ment in rock ( C i,r ) or soil ( C i,s ). The sign of ε (positive or negative)

represents variation of the soil profile (dilation or collapse). 

The above models have two historical challenges. First, these

steady-state models assume that the statistical properties of dy-

namics processes remain stable [154] . This ideal steady state may

never exist in real-world geomorphology. This is because tectonic

and climate conditions constantly change with possibly nonstation-

ary statistics. Particularly, chemical weathering requires the pres-

ence of water. Storms in acidic areas can cause significant and

rapid weathering, while cracking can also enhance weathering.

Hence, chemical weathering in the field may actually be a ran-

dom process with a mix of broadly distributed fast and slow pe-

riods. Second, whether the deterministic models can capture scale-

dependent, complex weathering rates remains unclear. The rate of

chemical weathering in the field, measured by chemical mass bal-

ance, isotopes, and element depletion, can vary by orders of mag-

nitudes (see Langan et al. [173] ). Colman [174] reviewed various

studies of rock weathering and suggested that the rate of weath-

ering ( R ) decreases with time and that the weathering rate can be

approximated as a logarithmic time function: R ∝ ln( t ). White and

Brantley [175] found that the average silicate weathering rate R de-

creases as a power-law time function: R = 3.1 × 10 −13 t −0.61 , likely

due to the combined impact of intrinsic processes (such as intrin-

sic surface area, which increases with the duration of weathering,

progressive depletion of energetically reactive surfaces, and accu-

mulation of leached layers and secondary precipitates) and extrin-

sic controls (including low permeability, high mineral/fluid ratios,

and increased solute concentrations), which cannot be measured

exclusively and quantified by deterministic models. 

The fPDE may be developed as an alternative to the above

steady-state models to capture the transient weathering rate with

scale dependency, random episodicity, and strong perturbation.

Process-based models of weathering would be ideal, while deter-

ministic models that can characterize the complex impact of chem-

ical, physical, and biological processes on weathering will remain

largely empirical [154] . This challenge motivates the application of

stochastic models, especially the tempered fPDEs, which are ef-

ficient for both space- and time-scale dependent dynamics [41] .

For example, the strong perturbation of weathering rate (especially

with fast rates due to cracks and/or storms) may be described by a

space-nonlocal term, and the episodicity in weathering can be ex-

plained using the concept of weathering periods separated by dor-

mant stages (which can exhibit a heavy-tailed distribution since

weathering occurs on a geological time scale). 

3.3.3. Pedogenesis (centimeter to meter scale) 

Pedogenesis involves the genesis, formation, development, and

evolution of a soil affected by interconnected physical, chemical,

and biological factors. As such, it is critical to all forms of life.

These complex processes have been interpreted for decades by soil

scientists and geomorphologists using various process-based mech-

anistic models (see, for example, Minasny et al. [176] ). Mechanis-

tic models of soil development in a landscape usually formulate

a continuity equation to capture the change in soil properties over
ime as a function of material transport. One of the simplest mech-

nistic models for soil development takes the form [176,177] : 

∂H 

∂t 
= 

ρr 

ρs 

∂e 

∂t 
− ∇ q s , (17)

here H [ L ] is soil thickness, e [ L ] is the boundary between the soil

nd bedrock, t [ T ] is time, q s [ L 3 T −1 ] is material flux, and ∇ is a

artial derivative vector. This model forms the bases of landscape

volution models. The derivative in the first term on the RHS of

odel ( 17 ), ∂ e / ∂ t , describes the rate of soil production, which can

e related to the rate of rock weathering discussed above [176] . 

To simulate soil evolution, Minasny and McBratney [178] devel-

ped a mass-balance formula by considering the soil production

nd transport (also see Minasny et al. [176] ): 

∂C 

∂t 
= I + D c 

∂ 2 C 

∂ z 2 
− kC − q C , (18)

here C [ LL −1 ] denotes the concentration (such as the soil organic

arbon concentration), I ( = ∂ e / ∂ t ) is the soil production rate, D C

 L 2 T −1 ] is the constant diffusion coefficient (describing the vertical

ixing of organic materials by soil fauna), k denotes the loss rate

such as the rate constant of decomposition), and q C is the trans-

ort of soil along the hillslope, which can be modeled as a simple

iffusion process. The above model can simulate the evolution and

istribution of soil thickness and organic carbon concentration in a

andscape. 

Fractional calculus might be applied to enhance the model ca-

ability for soil evolution. For example, the constant diffusion co-

fficient assumed by model ( 18 ) cannot capture vertical heteroge-

eous mixing, and the lateral transport of soil materials along a

egional-scale slope does not always follow normal diffusion, per-

aps due to topography. A fractional version of the comprehensive

oil evolution model can be built by extending the local diffusion

n the above model to nonlocal, anomalous diffusion. In addition,

he possibly slow evolution of soil organic carbon concentration or

ong-term erosion processes can be conveniently captured by re-

lacing the integer-order temporal derivative on the left-hand side

f ( 18 ) by a time-fractional derivative. Hence, the general fPDE

odel (2) might be used to develop a stochastic soil production

nd transport model to quantify pedogenesis. 

To summarize, the small vertical-scale Earth surface dynamics

escribed above can be affected by mixed geochemical and physi-

al factors, and they can exhibit similar patterns, such as random

pisodicity and diffusion-related kinetics. They all require the in-

eraction between solid (rock or minerals) and water. It is therefore

ot surprising that they were previously described by similar PDEs

uilt upon mass conservation. For example, the soil production and

ransport model ( 18 ) is analogous to the BCF model ( 6 ) describing

rystal growth, which has the same limitation in capturing non-

ickian diffusion. Hence, we can focus on the fractional-order KPZ

odel (in both space and time) by extending the fPDE model (2) to

escribe crystal growth of minerals in the field. The resultant fPDE

ith simplification (i.e., removing the nonlinear term) can be ap-

lied to capture transient rock/mineral weathering as well as soil

roduction and transport. 

. Challenges and future development of fPDEs in quantifying 

eological dynamics 

Historical challenges, such as the poor predictability of model

arameters and the unclear mathematical specification of bounded

ractional diffusion, can hinder practical applications for fPDEs in

eological dynamic processes. Other possible reasons for the lim-

ted application of stochastic theories in hydrologic sciences were

dentified by multiple groups of hydrologists (see, for example,

he recent debate about the failure of stochastic hydrogeologic
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pproaches in capturing reactive transport in real-world aquifers

42,43,48,179,180] ). Opinions are also found in the 2004 forum

181] , where nine eminent researchers identified the following rea-

ons preventing stochastic hydrology approaches from becoming

outine hydrological modeling tools: (1) sociological elements in-

luding the lack of handy tools and communication, and poten-

ial conflicts [182] ; (2) the time gap between research advance-

ents and application, and the lack of data and well-established

ools [183] ; (3) the lack of interest by clients in model uncertainty

nalysis, and the actual hydrogeological, technical, and social un-

ertainties [184] ; (4) technical limitations in reflecting real-world

onditions, the failure to communicate, interdisciplinary demand-

ng, and debatable assumptions such as stationarity and ergodic-

ty [185] ; (5) limited measurement capability and non-stationary

atural sediments [186] ; (6) the challenge of data collection and

quifer parameter estimation, the problematic assumption of er-

odicity, and the lack of software and education [187] ; (7) the lack

f multidisciplinary effort s [188] ; (8) the lack of education, and the

ack of interest from regulators in uncertainty [189] ; and (9) most

tochastic models being too simple to be relevant to real problems

190] . To summarize, the lack of aquifer information and the failure

o capture real-world conditions (such as nonstationary aquifers)

ere the most significant criticisms by the hydrogeologic commu-

ity for stochastic approaches. Here, we discuss the gap between

he fPDEs and real-world practical applications, by focusing on the

ajor technical challenges associated with the fPDEs and propos-

ng possible solutions when applying fractional calculus to capture

omplex dynamics in the Earth systems discussed above. 

.1. Parameter predictability 

It is difficult to predict complex dynamics in either the hydro-

phere or the solid Earth using nonlocal transport models, because

f the unknown quantitative relationship between model param-

ters and medium properties (or the other major controlling fac-

ors). A few numerical tools are available to fit the model parame-

ers given measurements (such as pollutant breakthrough curves

r BTCs in the hydrosphere), including the particle-tracking ap-

roach proposed by Chakraborty et al. [191] , the nonlinear regres-

ion method proposed by Lim et al. [192] , and the local and global

ptimization scheme proposed by Kelly et al. [193] . Model pre-

iction, however, is much more difficult and practically important

han the fitting exercise. As discussed above, it is plausible (and

ometimes necessary) to propose a fractional-order Fick’s law of

iffusion, Newton’s law of viscosity, or Fourier’s law of heat con-

uction, and to introduce heavy-tailed memory kernels in spa-

iotemporal convolution to account for the time rate change of

ass, momentum, or energy. Prediction of the proposed nonlocal

arameters in real-world applications for geological media, how-

ver, has never been trivial. In addition, the best-fit parameters

ight not be unique for a given BTC if multiple parameters con-

rol similar behavior of transport, such as the late-time tailing in

he BTC. 

The recent work of Zhang et al. [15] using extensive Monte

arlo simulations provides one example of how to build a pre-

ictive fPDE for pollutant transport through regional-scale fluvial

quifer/aquitard settings when the flow remains steady state. Par-

icularly, the two time-nonlocal parameters in model (1), which

ontrol pollutant retention in immobile domains, including the

ime index γ and the time truncation parameter λT , can be es-

imated given the volume fraction of low-permeability floodplain

eposits classified by thickness that can be gleaned from detailed

ell logs, outcrops, and/or geophysical surveys. Extra caution is

eeded when approximating the effective velocity and dispersion

oefficient in the fPDE (1), which in this example, describes pollu-

ant displacement in mobile time that could not be predicted accu-
ately based on measurable lithology, since the exact pathway for

ollutants is difficult to predict even given the spatial distribution

f lithology or local velocity distributions. 

To enhance the fPDE model predictability, extensive

eld/laboratory experiments and Monte Carlo simulations are

eeded to link model parameters to statistics of major properties

f geological media and natural triggers. Field monitoring tech-

iques, such as remote sensing, geophysical survey, and seismic

ave survey, can be applied to enhance model predictability.

ovel inverse modeling approaches can also be helpful to di-

ectly calculate the memory kernels in model (2) using observed

ynamics. 

.2. Fractional diffusion in bounded domains 

Dynamic processes in the Earth system are typically bounded in

eological space and time. Previous applications of fPDEs in geol-

gy, especially the hydrologic sciences, however, have been limited

o unbounded spatial domains, because the mathematically-correct

pecification of fractional differential equations on a bounded do-

ain remains a historical challenge. It is not trivial to define

oundary conditions for a fPDE, because fractional derivatives are

onlocal operators, and the nonlocal boundary condition extends

eyond the boundary. An arbitrarily defined, spatially-nonlocal,

ractional-order boundary condition may lead to an ill-posed fPDE.

Recently, several researchers have focused on bounded frac-

ional diffusion. For example, Baeumer et al. [194] defined the

PDE with a specific reflective boundary in a semi-finite, one-

imensional domain: 

∂ f ( x, t ) 

∂t 
= 

∂ α f ( x, t ) 

∂ (−x ) 
α (19a) 

f ( x, t ) | t=0 = δ( x − x 0 ) (19b) 

∂ α−1 f ( x, t ) 

∂ (−x ) 
α−1 

∣∣∣∣
x = L 

= 0 (19c) 

f ( x, t ) | x =+ ∞ 

= 0 , (19d) 

o that no external, nonlocal diffusive flux can recharge via the

pstream boundary and affect the internal super-diffusive dynam-

cs, keeping the boundary value problem well-posed. Defterli et al.

195] used the recently developed theory of nonlocal diffusion to

dentify a well-posed fPDE with an absorbing boundary. Sankara-

arayanan [196] worked on the one-sided fADE on the interval (0,

) and defined the appropriate reflecting and absorbing boundary

onditions (by assuming zero density outside the model domain,

o simplify Grünwald-type approximations). The mathematically-

orrect specification of a general fPDE on a bounded domain with

eneralized, nonzero-value Dirichlet, Neumann, or mixed Robin

oundary conditions, however, remains obscure, and therefore,

hether there exists a unique solution depending continuously on

he initial data for the general bounded fractional diffusion model

emains unclear. 

To obtain an applicable boundary value problem for the hy-

rologic community, Zhang et al. [197] proposed specific nonlo-

al boundary conditions (with both zero and nonzero-value Dirich-

et, Neumann, and Robin boundary conditions) for the fADEs and

eveloped particle tracking codes to solve these specific frac-

ional boundary value problems. Results showed that the sign

f the Riemann–Liouville fractional derivative (capturing nonzero-

alue spatial-nonlocal boundary conditions with directional super-

iffusion) should remain consistent with the sign of the fractional-

iffusive flux term in the fADEs, and non-traditional schemes must

e used in the Lagrangian solver for the reflective boundary so that
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the mathematical problem (e.g., the form of the fADE) remains

unchanged. Tremendous efforts are still needed to interpret the

mathematical problems and physical meanings for bounded fPDEs

before we can reliably quantify bounded non-Fickian dynamics in

the Earth system. 

4.3. Spatially and temporally nonstationary transport 

FPDEs are the scaling limit of stochastic processes with

random-walking particles undergoing Lévy motion, and therefore,

the fPDE models with constant parameters can be used for a

system with stationary heterogeneity where the statistics of tar-

get dynamics remain stable. The assumption of stationarity has

never been systematically checked for real-world geological media,

likely due to the technical difficulty and prohibitive burden. Spatial

non-stationarity with heterogeneity evolution, due to the change

of large-scale tectonic/environmental conditions and/or sediment

supply, however, is not uncommon in real-world depositional sys-

tems, violating the ergodicity assumption and challenging the ap-

plication of fPDEs with constant parameters, especially the con-

stant time/space index, which is the upscaling parameter for the

statistically homogeneous medium. 

For spatially nonstationary systems, both the time memory

function ( f ) and the kernel ( g ) for diffusive jumps in the gener-

alized fPDE (2) can be space dependent, to capture anomalous

scaling with the travel distance. Berkowitz et al. [198] also sug-

gested a space-dependent memory function in their continuous

time random walk framework, although the geological delineation

of representative zones with characteristic stationarity remains un-

clear. Anomalous scaling due to spatial non-stationarity, there-

fore, may be captured by the variable-order fPDEs [e.g., 199–202 ],

distributed-order fPDEs [203–208] , or their mixture [209] . In hy-

drologic sciences, the variable-order fPDE was firstly applied by

Zhang et al. [25] to capture observed large-scale bed-load sediment

transport in rivers and by Sun et al. [210] to simulate contaminant

transport observed in porous and fractured aquifers. Further hydro-

logical applications are needed to reveal the relationship between

the evolution of natural geological media and index variation in

fPDEs, in addition to the exact representative scale of the upscaled,

fPDE model. 

To further challenge the application of single-index fPDEs,

spatially-stationary media can invoke temporally nonstationary

transport behavior. The impact of non-stationarity can also oc-

cur in time in statistically homogeneous media, requiring a time-

dependent index in the fractional derivative. For example, under

specific hydraulic conditions, such as transient flow, changes be-

tween stress periods, boundary conditions and/or types, or the re-

verse of flow direction (due, for example, to the pump-and-treat

process during groundwater contamination remediation), behav-

iors of anomalous transport may change with time, as proposed

by Fogg and Zhang [180] . This was partially observed by Fogg et al.

[211] and Zhang et al. [46] . Parameters in fPDE (1) might be time-

dependent because the pathways for water and chemicals now

change with time due to the temporal fluctuation of magnitude

and/or direction of flow velocity. More generally, model parameters

might be functions of time, leading to a variable-order fPDE with

a time-dependent index [210] or a distributed-order fPDE where

the waiting times between particle jumps distribute as a mixture

of power laws [211] . 

It is important to distinguish transient diffusion caused by lo-

cal variation of system properties and non-stationary evolution of

system heterogeneity, both of which can cause temporal- and/or

spatial-scaling of anomalous diffusion. Single-order fPDEs with

variable velocity and dispersion coefficient [12] or the single-order

fPDEs with a tempered stable density [41] , which are favored by

hydrologic modelers due to fewer parameters than the multi-order
PDEs, should be used to describe spatiotemporal-dependent dif-

usion in stationary geological media with local variation of geo-

ogical properties, such as the local fluctuation of aquifer/aquitard

aterial proportions or different regions of an ancient meander-

ng river, like the one observed at the well-studied MADE test

ite [212,213] . However, for strong variation of anomalous diffu-

ion, such as the apparent and quick transfer from sub-diffusion

o super-diffusion (and vice versa), which cannot be explained rea-

onably by local variation of medium properties, the variable-order

PDE might be a better choice. 

.4. Incorporating geologic information in fPDEs 

The lack of incorporation of geological characteristics, especially

ritical geologic architecture controlling mass/momentum/energy

ynamics, in stochastic hydrogeology has been identified by var-

ous hydrologists as the major reason for the gap between stochas-

ic approaches and practical applications (see the review by Ra-

aram [43] ). To capture regional-scale dynamics occurring in ge-

logic media, major geologic and physical architecture (that can

ause non-Fickian dynamics) should be well characterized in

he model, including, especially, spatially-interconnected prefer-

ntial pathways (such as ancient channels in alluvial deposits)

or mass/momentum/energy and the surrounding “stagnant” zones

such as the floodplain deposits), which retard the target dynam-

cs. However, the fPDE, as a parsimonious, upscaling model, was

esigned to capture super-diffusion and sub-diffusion without the

ecessity to map detailed medium heterogeneity. The dilemma is

hat the fPDE works the best for a transport distance covering all

epresentative heterogeneity, or approaching the asymptotic state.

n a real-world problem, such as a typical contaminant plume

bserved in clastic sedimentary deposits, the plume longitudinal

ength is usually on the order of 10 2 ∼10 3 m [180] , and hence, the

ajority of pollutants may only sample part of the medium het-

rogeneity, violating the upscaling assumption of fPDEs. For ex-

mple, at the MADE test site, the tracer (bromide and tritium)

lume extended only ∼300 m downstream in one year, where the

racers were mainly located in the connected gravel and sand de-

osits [214] . Similar plume size and transport paths could also be

ound for the other natural gradient tracer test sites [180] . This

re-asymptotic transport due to short travel distance is the op-

osite of long distance, nonstationary transport discussed in the

revious section. In this case, local variations of geologic architec-

ure need to be incorporated in the model to capture the nuance

f pre-asymptotic transport. 

One solution is to develop a pre-asymptotic nonlocal model,

uch as the tempered fPDE [41] , conditioning on local geologic

roperties, such as the field-measured flow velocity, porosity,

ithology, soil moisture, or any other information using geology, hy-

rogeology, geophysical survey, and/or remote sensing. Some pre-

iminary tests were presented by Zhang et al. [28] , and further

eal-world applications are needed. The balance between sub-grid

esolution of medium heterogeneity (such as flow velocity and to-

ography) and fractional diffusion (in both space and time) also

eeds to be defined to address the above issue. 

.5. New fPDEs required for additional functionality 

New fPDEs may be required to model complex dynamics in

he solid Earth. For example, mudflow contains interacting water

nd solids, whose movement affects each other. A fractional-order,

ulti-phase-coupled physical model is therefore preferred. In addi-

ion, non-Newtonian behavior in the outer core and magma cham-

ers, and viscoelastic flow associated with mantle convection, re-

uire the development and application of fractional-order consti-

utive equations (see, for example, Bagley and Torvik [215] and

ainardi [216] ) for geological dynamics. 
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. Conclusion 

Effective simulation of geological dynamics in both the solid

arth and the hydrosphere remains an outstanding challenge. Com-

lex system heterogeneity, limited information, and unknown com-

onent interaction at all relevant levels may force geologists to

urn to advanced stochastic models, such as fractional calculus-

ased governing equations, whose rigorous development can be

est provided by qualified mathematicians. Hence, a close collab-

ration between geologists and mathematicians is required to de-

elop the next-generation physical models for a broad range of ge-

logical dynamics in the hydrosphere and solid Earth. This study

rovides the first extensive review of major solid Earth dynamics

nd hydrologic processes that might be addressed by fractional cal-

ulus in the next several decades. 

In the hydrosphere, non-Fickian dynamics have been well-

ocumented for water flow and chemical transport through het-

rogeneous aquifers, soils, and rivers consisting of both mobile re-

ions and relatively immobile zones, which can be efficiently quan-

ified by fPDEs that assume random displacement between ran-

om waiting times for water (including groundwater, soil mois-

ure, and overland flow), pollutants, and sediment. Future research

irections of fractional calculus in the hydrosphere may include

he development and application of fPDEs in characterizing real-

orld-complex hydrologic dynamics that have not been focused

n yet, including, for example, complex reactive transport, multi-

hase and variable density flow, and complex dynamics observed

n other aquatic processes. 

Future applications of fPDE models in the geological sciences

an also focus on solid Earth dynamics, which can be classi-

ed into three major groups (i.e., Earth internal processes, large-

cale Earth surface processes, and small-scale growth/erosion sur-

ace processes), depending on their position and scale. To quantify

hese three groups of solid Earth dynamics, mechanistic physical

odels are preferred, and fractional calculus can be added to ac-

ount for spatial and temporal memories in system dynamics likely

issed by traditional models. First, the large-scale, internal Earth

ynamics typically involve plastic, viscoelastic, or non-Newtonian

dvective flow occurring in specific regions with bounded domains.

pplication of fPDEs in these regions can be challenging due to

imited information on the internal Earth, but the lack of fine-

cale information is also one of the major reasons to apply fPDEs,

hich can account for local-scale heterogeneity more efficiently

han standard models. 

Second, near-surface, large-scale processes with non-Fickian dy-

amics, which are the most easily recognized and are extensively

onitored, include mass movement, landscape evolution, and Aeo-

ian sand dune migration. These processes are controlled by many

actors that fluctuate over a wide range of spatial and/or temporal

cales. Most Earth surface processes reviewed in this study exhibit

lternate random transport (such as materials moving downslope

ue to gravity, sand dune migration driven by wind, and glacial

otion due to gravity and its own weight) and waiting periods

due to, for example, burial of soil particles in soil creep and burial

f sand particles in dunes), requiring fPDE models that can distin-

uish mobile and immobile phases. Considering the abundant data

vailable for surface processes, it is possible that the study of Earth

urface dynamics may eventually enhance model predictability by

evealing memory kernels. 

Third, small-scale growth/erosion surface processes, including

rystal growth of minerals, rock/mineral weathering, and pedo-

enesis, are affected by both physical and chemical factors, and

an exhibit similar dynamic behaviors. The KPZ equation, which

s the general surface-growth model, can be expanded to account

or nonlocal diffusion in both space and time by applying frac-

ional calculus, as already proposed by several studies. The resul-
ant fractional-order KPZ model is expected to capture both ran-

om episodicity and nonlocal diffusion-related kinetics in crystal

rowth under natural geological conditions, and eventually, lead to

fficient modeling of transient rock/mineral weathering as well as

oil production and transport. 

Previous fPDE models have historical challenges in capturing

eal-world anomalous diffusion, especially those associated with

omplex solid Earth dynamics. This is similar to the status of

ther stochastic theories in hydrologic applications. Stochastic sub-

urface hydrology still cannot capture the nuance of groundwa-

er flow and transport after ∼40 years of research. Future techni-

al development for the fPDE models should at least include pre-

ictable spatiotemporal nonlocality, correct mathematical specifi-

ation of bounded fractional diffusion, efficient characterization of

patiotemporally nonstationary transport, and efficient governing

quations for specific kinetics. 

Challenge and opportunity exist simultaneously in the applica-

ion of fractional calculus in Earth system dynamics. Development

f fPDEs may eventually allow (1) different dynamics to be mod-

led with generalized governing equations and (2) reliable charac-

erization of complex kinetics in the Earth system with spatiotem-

oral boundaries and strong interactions. It is likely that the fPDE,

fter substantial extension and validation, may become the next-

eneration, solid Earth dynamic models. The current bottleneck in

he application of fractional calculus in hydrologic sciences might

ot be the end of a promising stochastic approach, but rather be

he early stage of a decade-long effort filled with multiple new re-

earch and application directions. 
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